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The small-world phenomenon is one of the most important properties found in social networks.
It includes both short path lengths and efficient navigation between two individuals. It is found by
Kleinberg that navigation is efficient only if the probability density distribution of an individual to
have a friend at distance r scales as P (r) ∼ r−1. Although this spatial scaling is found in many
empirical studies, the origin of how this scaling emerges is still missing. In this letter, we propose
the origin of this scaling law using the concept of entropy from statistical physics and show that
this scaling is the result of optimization of collecting information in social networks.
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Since the finding of “six degrees of separation” phe-
nomenon [1, 2], i.e. “the small-world property” of hu-
man society, much attention from many disciplines has
been attracted to the studies of social networks [3–11] .
The small-world property is based on two important fea-
tures [12]. First, there exist very short paths between any
two individuals in a social network. Second, individuals
can find their searching target efficiently via short paths
by merely local information. While the first feature is
well understood [13–15], the understanding of the second
factor is not yet complete. In particular, although Klein-
berg proved that for power law distribution of distance,
efficient searching is possible only when the link length
distribution P (r) ∼ r−1 [12, 16], the explanation on how
this scaling emerges in social networks is still missing.

In recent years, more and more empirical studies have
confirmed this spatial scaling in different social networks.
Liben-Nowell et al. explored the geographic properties in
an online social network [17]. They used data from the
LiveJournal online community with about 500,000 mem-
bers, in which their state and city of residence, as well
as a list of their LiveJournal friends are available. They
found that the probability density function (PDF), P (r),
of an individual having a friend at a geographic distance
r is about P (r) ∝ r−1. Almost at the same time, Adamic
and Adar have also found the same scaling phenomenon
[18]. They investigated a relatively small social network,
the Hewlett-Packard Labs email network. The PDF of
the distance between interacting people is also found to
scale as P (r) ∝ r−1. More recently, Lambiotte et al.

investigated a large mobile phone communication net-
work [19]. The network consists of 2.5 million mobile
phone customers that have placed 810 million communi-
cations, for whom they have the geographical home lo-
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cation information. They found that the probability of
two nodes (u and v) to have a long range connection of
length r(u, v) is Pr(u, v) ∝ r(u, v)−2. For 2-dimensional
space, the number of nodes which have distance r from
a given node is proportional to r. This implies that the
PDF of an individual to have a friend at distance r is
P (r) ∝ r · r−2 = r−1. Very recently, Goldenberg and
Levy investigated several large online communities, and
also detected the same spatial scaling phenomenon [20].
From the above empirical investigations, one can con-
clude that the PDF of having a friend at distance r is

P (r) ∝ r−1. (1)

The importance of this scaling has been illustrated
by Kleinberg [12, 16]. Kleinberg has proved that in a
d-dimensional space, when the probability of having a
long range connection of length r between u and v is
Pr(u, v) ∝ r(u, v)−d, the network is optimally navigated
[12, 16, 21]. For d-dimensional lattice, the number of
nodes that have the same distance r to a given node is
proportional to rd−1. So when the PDF of the distance
from a given node is P (r) ∝ rd−1 · r−d = r−1 for all
d, the network structure is optimal for navigation. This
spatial scaling property enables people to send messages
efficiently in minimal number of hops to all nodes of the
system. However, the optimal local search cannot be the
origin of this kind of spatial scaling law, because there
is no motivation for individuals to find short paths to all
individuals which are not known to them and are not
in their friendship circle. Even if this motivation ex-
ists there is no way for the individual to know how to
implement it, since he needs global information on the
network structure. Thus, there should be a fundamental
origin that governs the emergence of the spatial scaling
law, Eq. (1).

Indeed, for some online social networks, it is possible
that the geographical distance is not evident to the in-
dividuals and thus the r-dependent is not expected. In
this case, the number of individuals linked to a given
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individual at distance r should be proportional to r in-
stead of r−1, so P (r) should be proportional to r. As
found by Kleinberg, this kind of social networks will not
be efficiently navigable. In contrast, as discussed above,
for some online social networks P (r) ∝ r−1 is observed
[17, 20] meaning that in this kind of social networks ge-
ographical distance plays an important role in choosing
friends. Such networks are efficiently navigated. For this
kind of online social networks, the intersection of online
and off line friendships is probably high since people ex-
pect the online friends to become off line friends, thus,
yielding P (r) ∝ r−1.

In this letter we propose a plausible origin of this scal-
ing with one of fundamental statistical physics concept,
the entropy. We hypothesize that human social behavior
is based on gathering maximum information through dif-
ferent types of activities. Making friends can be regarded
as a way of collecting information. Thus we suggested
that the formation of local structure of social network
may be determined by collecting optimal information.
Entropy is a concept used to measure the quantity of
information and diversity as proposed by Shannon [22].
To get optimal information, one should maximize the di-
versity of his friendships and this could be described by
maximizing information entropy. So maximization of en-
tropy could be a general purpose for an individual which
collectively shape the social network architecture. We
will show that a social network based on Eq. (1) is an
optimal network with a maximum entropy which benefit
people in collecting maximal information.

To model a social system we use a toroidal lattice to
denote the world in which each node represents an in-
dividual. We assume that each individual has a finite
energy w which can be represented by the sum of dis-
tances between an individual and all his or her friends,

m∑

v=1

r(u, v) = w, (2)

where m is the number of direct links of node u. Eq. (2)
implies that every node u selects its long range acquain-
tances v, one by one, until the total distance reaches w.

The information that node v brings to u can be evalu-
ated by considering the information of node v and all its
neighbors. Thus, the information that u collects can be
expressed by the sequence of nodes as illustrated in Fig.
1 and the entropy of the whole sequence measures the
amount of information [22]. We assume that all nodes
are equivalent, so the information obtained by one node
can represent the information obtained by each of the
other nodes. Thus, our model for constructing a social
network is

Max ε = −

n∑

i=1

qi log qi, (3)

subjected to Eq. (2). In Eq. (3), qi denotes the frequency
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FIG. 1: The friends and friends of friends of node 1. Nodes
2, 3 and 4 are the friends of node 1 for which Eq. (2) yields
d(1, 2) + d(1, 3) + d(1, 4) = w. The size of the network is n =
12 and the information sequence is {2, 3, 4, 5, 6, 7, 7, 8, 9, 9, 10}
and the frequencies of all nodes are q2 = q3 = q4 = q5 = q6 =
q8 = q10 = 1

11
, q7 = q9 = 2

11
, q1 = q11 = q12 = 0. If one

site is reached several times when constructing the long range
connections from node 1 or from different nearest neighbors
(such as nodes 7 that can be reached through nodes 2 and 3),
it will appear in the node sequence and in Eq. (2) the same
number of times.

of node i in the information sequence (see Fig. 1) and n

is the size of the network. When i is not a neighbor and
not a next nearest neighbor of u, qi = 0, and we define
qi log qi = 0. Thus, Eq. (3) implies that the informa-
tion entropy ε is determined by the sequence of friends
and friends of friends. We also analyzed the case where
information is achieved also from friends of “friends of
friends” [23] and obtained similar conclusions.

Our optimization model (OM) is based on Eqs. (2) and
(3) which represent two competing processes. To max-
imize entropy (Eq. (3)), it is preferred to have friends
at long distances in order to explore new parts of the
network and to obtain more information. However the
farther one goes he can have less friends due to the finite
energy limited by Eq. (2). The link length distribution
of these networks decays as a power law, which infers a
smaller amount of long range connections. These long
range connections are can be regarded as ’weak’ in the
sense of their amount, but play a crucial role in the net-
work function similar to ’weak ties’ [26]. Assuming the
PDF of having a friend at distance r obeys

P (r) ∝ r−α, (4)

we can explore the value of α that yields maximum en-
tropy under the condition of Eq. (2).

The optimization model is simulated on a toroidal lat-
tice whose size is L × L (L = 10000 means that individ-
uals can make friends in a population of 108) and lattice
(‘Manhattan’) distance is employed. Because toroidal
lattice is a regular network and each node has a unique



3

ε

α

w

 

 
(a) (b)

(c) (d)
−0.5 0 0.5 1

2

4

6

8

10
x 10

5

6

8

10

12

0.2 0.4 0.6 0.8 1 1.2
8

9

10

11

12

α

ε

 

 

f = 300

f = 500

f = 1000

50 1000300 600

0.5

1

1.5

f

O
p
ti
m

a
l
α

 

 
L = 10000

0 0.7 10.3

x 10
−3

0.8

1

1.2

1

L

 

 

O
p
ti
m

a
l
α

f = 300

f = 500

f = 10000

FIG. 2: The relationship between ε,w, f , α and L in the opti-
mization model. a. The contour map shows the relationships
between w, α and ε, for L = 10000. The colors indicate the
value of ε. In b, the dependence of the information entropy
ε on α for f = 300, 500, 1000 is shown. c. The dependence of
the optimal α on the average number of friends f . The error
bars denotes the standard deviations. d. The relationships
between optimal α and L of the lattice. From it we can see
that for large L the optimal α approaches 1. The error bars
denotes the standard deviations.

index, we can calculate the lattice distance between any
pair of nodes and we do not need to construct the whole
network, enabling us to simulate very large lattices.

For a large enough 2-dimensional lattice, the number
of nodes that have distance r from a given node is propor-
tional to r. So if w → +∞, that means if we consider the
maximal diversity of friendships without any constraints
of energy, we expect P (r) ∝ r to be the optimal entropy
information since each node has the same probability in
the information sequence. In practice, individuals nat-
urally have a limited energy w. Our numerical results
shown in Fig. 2.a indicate that when α ≈ 1, the infor-
mation entropy ε is near its maximum value for a very
broad range of w. For the range w ∈ (5 × 104, 106), we
find the optimal α to be α = 1 ± 0.05.

When the size of the lattice is L and P (r) ∝ r−1, the
mean distance between friends is L

log L
. Therefore, we can

find the average number of friends f to be

f =
w log L

L
(5)

which gives one to one correspondence between f and w

at the optimal state. When L = 10000 and w ∈ (5 ×
104, 106) the average number of friends is f ∈ (50, 1000)
which indeed corresponds to reality [24]. In particular,
when considering the average number of friends we con-
tact in one year, f = 300 [24], the optimal value of α is
α = −0.99 ± 0.03 (as shown in Fig. 2).

Our results suggest that P (r) ∝ r−1 is the optimal
distribution for maximizing entropy between all power
law distributions. Is P (r) ∝ r−1 the optimal distribu-
tion when considering all kinds of distributions? We will
demonstrate, based on the following evolutionary model
(EM), that among all kinds of distributions, P (r) ∝ r−1

is still the optimal one. In the EM, we also construct a
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FIG. 3: The results of evolutionary model when L = 100 and
f = 50. a. The simulation results of OM on a toroidal lattice
with the preset power law distribution P (r) ∝ r−α. b. the
dependence of the information entropy ε or α for f around
40 in the OM. We can see that when f = 50, the optimal
exponent is 0.95 and it is very close to 1. c. The changes of
entropy in the EM with the evolution time. Finally, the en-
tropy reaches its maximum and the system achieves a steady
state. The maximal entropy is 7.15 which is very close to the
entropy 7.18 in the network of L = 100 where we preset the
distribution is P (r) ∝ r−1. The inset shows the time evolu-
tion of the difference of the entropy in succesive times, which
decays exponentially. Thus we can see that for a sufficient
long time evolution, the entropy converges to a fixed value
and the system achieves a steady state. d. The cumulative
distribution of the distance in EM is shown in log-linear plot
in the steady state. The close to linear approximation shows
that this distribution is very close to P (r) ∝ r−1 (dashed
line).

network on a lattice of size L×L. A node ui is one of the
neighbors of node u when there is a direct link from u to
ui. Each node u has friends at distances r(u, ui) subject
to

∑
ui∈U r(u, ui) ≤ w, where U is the set of all neighbors

of node u. In the initial stage of the EM, P (r) is set to
be a uniform distribution. Then we employ the extremal
optimization method [25], to maximize the entropy, Eq.
(3), through the following evolution of network architec-
ture. At each step, a node is chosen randomly. For a
chosen node u, we make two operations, deleting and
adding neighbors according to the marginal improvement
of entropy. Suppose u has k neighbors. For the delet-
ing execution, we first calculate the marginal entropies

of each neighbor of node u, {
△Eu1

r(u,u1)
,

△Eu2

r(u,u2)
, · · · ,

△Eu
k

r(u,uk)},

where △ Eui
means the change in the entropy of node u

when we delete node ui from the neighborhood of node
u with other parameters being unchanged. Then we ran-

domly select a comparatively small |
△Eui

r(u,ui)
| with proba-

bility Pr(ui) proportional to (rank|
△Eui

r(u,ui)
|)−1−log(k) [25]

and delete ui from u’s neighborhood. For the adding
link execution, suppose v1, v2, · · · , vh are all the candi-
dates which are currently next nearest neighbors of node
u. We first calculate the marginal entropies of each of the

candidate, {
△Ev1

r(u,v1)
,

△Ev2

r(u,v2)
, · · · ,

△Ev
h

r(u,vh)}, then we also em-

ploy the extremal optimization method to choose a node
whose marginal entropy is comparatively large among all
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candidates’ marginal entropies as a friend of node u. We
repeat the adding execution until all the candidates are
chosen or the energy limit (Eq. (2)) is satisfied.

In the evolutionary model, we have to record all friends
of each node and therefore a system of size L × L with
L = 10000 is too large to simulate. So we simulate the
evolutionary model on a toroidal lattice of size 100×100.
We assume that the energy scales linearly with distance
as suggested by Eq. (2). Thus, when reducing L from
10,000 to 100 (factor of 100) we expect the corresponding
energy to be reduced from order of 105 to order of 103.
We therefore study the EM model of L = 100 with w =
1086 (f = 50).

In order to find the optimal distribution of the dis-
tances for the EM, we first employ the optimization
model described by Eqs. (2)-(4) to analyze the above
case with the system size 100 × 100 and w ≃ 103. We
find that the maximum entropy is 7.18 and the corre-
sponding α is α = 0.95 ± 0.05 (see Fig. 3a, b). Next
we simulate the evolutionary model of size of 100 × 100
and w ≃ 103. After long term evolution from the ini-
tial uniform distribution (each node modify the neigh-
borhood more than 40000 times), the system achieves
its stationary state (Fig. 3c). The maximum entropy
is 7.15 and the corresponding PDF of the distance be-
tween the friends scales as P (r) ∝ r−1 (Fig. 3d), which
are very close to the results obtained by OM. So we con-
clude that P (r) ∝ r−1 is the optimal PDF of distances of
friendships for collecting maximal information. It implies
that, the spatial structure of the real social networks is
the most optimal structure for maximizing the diversity
of the friends’ location and help individuals to collect
information efficiently.

From empirical analysis, it is found that the proba-
bility distribution of having a friend at distance r scales
as P (r) ∝ r−1 which seems to be a universal spatial
property for social networks. This provides us another
remarkable scaling phenomenon for which the origin was
not known. It is shown here that basic concepts of statis-
tical physics can be introduced to understand the origin
of this spatial scaling law. We show that these scaling
laws result from the maximization of entropy, that can
benefit individuals for optimally collecting information.
Our findings offer a useful framework to understand the
structure and function of social networks.
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