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We study a quantum quench for a semiconductor quantum dot coupled to a Fermionic reservoir,
induced by the sudden creation of an exciton via optical absorption. The subsequent emergence of
correlations between spin degrees of freedom of dot and reservoir, culminating in the Kondo effect,
can be read off from the absorption lineshape and understood in terms of the three fixed points of the
single-impurity Anderson model. At low temperatures the lineshape is dominated by a power-law
singularity, with an exponent that depends on gate voltage and, in a universal, asymmetric fashion,
on magnetic field, indicative of a tunable Anderson orthogonality catastrophe.

PACS numbers:

When a quantum dot (QD) is tunnel-coupled to a
Fermionic reservoir (FR) and tuned such that its topmost
occupied level harbors a single electron, it exhibits at low
temperatures one of the most spectacular phenomena of
many-body physics – the Kondo effect, in which QD and
FR are bound into a spin singlet. It is interesting to ask
how Kondo correlations set in after a quantum quench,
i.e. a sudden change of the QD Hamiltonian, and cor-
responding predictions have been made in the context
of transport experiments [1–4]. Optical transitions in
quantum dots [5–7] offer an alternative arena for prob-
ing Kondo quenches: the creation or annihilation of a
bound electron-hole pair – an exciton – via photon ab-
sorption or emission implies a sudden change in the local
charge configuration. This induces a sudden switch-on
or switch-off of both a strong electron-hole attraction [6–
8] and an exchange interaction between the bound elec-
tron and the FR. The subsequent dynamics is governed
by energy scales that become ever lower with increasing
time, leaving tell-tale signatures in the absorption and
emission lineshapes. For example, at low temperatures
and small detunings relative to the threshold, the line-
shape has been predicted to show a gate-tunable power-
law singularity [8]. Though optical signatures of Kondo
correlations have not yet been experimentally observed,
prospects for achieving this goal improved recently due
to two key experimental advances [9, 10].

Here we propose a realistic scenario for an optically-
induced quantum quench into a regime of strong Kondo
correlations. A quantum dot tunnel-coupled to a FR is
prepared in an initial state containing no Kondo correla-
tions (Fig. 1(a)). Optical absorption of a photon creates
an exciton, thereby inducing a quantum quench to a state
conducive to Kondo correlations (Fig. 1(b)). The sub-
sequent emergence of spin correlations between the QD-
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FIG. 1: A localized QD e-level, tunnel-coupled to a FR and
(a) assumed empty at t = 0, (b) is filled at t = 0+ when an
optical excitation produces a neutral exciton (i.e. an electron-
hole pair in the QD e- and h-levels), leading to Kondo cor-
relations between QD and FR for t → ∞. (c) Starting from
an empty QD state |G〉i (for T = 0), the absorption rate at
frequency ωL = ωth + ν (with detuning ν from the thresh-
old ωth = Ef

G −Ei
G) probes the spectrum of H f at excitation

energy ν. (d) Cartoons illustrating the nature of the free or-
bital (FO), local moment (LM) and strong coupling (SC) fixed
points of the Anderson impurity model, which are dominated
by charge fluctuations, spin fluctuations (indicated by dashed
arrows) and a screened spin singlet, respectively.

electron and the FR, leading to a screened spin singlet, is
imprinted on the optical absorption lineshape (Fig. 1(c)):
its high-, intermediate- and low-detuning behaviors are
governed by the three fixed points of the single-impurity
Anderson model (AM) (Fig. 1(d)). We present detailed
numerical and analytical results for the lineshape over
the entire frequency regime, as a function of tempera-
ture and magnetic field. At zero temperature we predict
a tunable Anderson orthogonality catastrophe, since the
difference in initial and final ground state phase shifts of
FR electrons (indicated by wavy lines in Fig. 1(d)) can be
tuned by magnetic field and gate voltage via their effects
on the level occupancy.
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Model. We consider a QD, tunnel-coupled to a FR,
whose charge state is controllable via an external gate
voltage Vg applied between a top Schottky gate and
the FR (see Fig. 1(a,b)). In a gate voltage regime for
which the QD is initially uncharged, a circularly polar-
ized light beam (polarization σ) at a suitably chosen
frequency ωL propagating along the z-axis of the het-
erostructure will create a so-called neutral exciton [11]
(X0), a bound electron-hole pair with well-defined spins
σ and σ̄ = −σ (∈ {+,−}) in the lowest available lo-
calized s-orbitals of the QD’s conduction- and valence
bands (to be called e- and h-levels, with creation opera-
tors e†σ and h†σ̄, respectively). The QD-light interaction
is described by HL ∝ (e†σh

†
σ̄e−iωLt + h.c.). We model the

system before/after absorption by the initial/final Hamil-
tonian H i/f = H

i/f
e +Hc +Ht, where

Ha
e =

∑
σ

εaeσneσ + Une↑ne↓ + δafεhσ̄ (a = i, f) (1)

describes the QD, with Coulomb cost U for double oc-
cupancy of the e-level, neσ = e†σeσ, and hole energy εhσ̄

(> 0, on the order of the band gap). The e-level’s ini-
tial and final energies before and after absorption, εaeσ
(a = i, f), differ by the Coulomb attraction Ueh(> 0) be-
tween the newly created electron-hole pair, which pulls
the final e-level downward, εaeσ = εeσ − δafUeh (Fig. 1b).
This stabilizes the excited electron against decay into
the FR, provided that εf

eσ lies below the FR’s Fermi
energy εF = 0. Since H f 6= H i, absorption imple-
ments a quantum quench, which, as elaborated below,
can be tuned by electric and magnetic fields. The term
Hc =

∑
kσ εkσc

†
kσckσ represents a noninteracting con-

duction band (the FR) with half-width D = 1/(2ρ)
and constant density of states ρ per spin, while Ht =√

Γ/πρ
∑
σ(e†σcσ + h.c.), with cσ =

∑
k ckσ, describes its

tunnel-coupling to the e-level, giving it a width Γ. A
magnetic field B along the growth-direction of the het-
erostructure (Faraday configuration) causes a Zeeman
splitting, εeσ = εe + 1

2σgeB, εhσ = εh + 3
2σghB (the

Zeeman splitting of FR states can be neglected for our
purposes [12]). The electron-hole pair created by photon
absorption will additionally experience a weak but highly
anisotropic intra-dot exchange interaction [12]. Its effects
can be fully compensated by applying a magnetic field
fine-tuned to a value, say Bσeh, that restores degeneracy
of the e-level’s two spin configurations [12]. Henceforth,
B is understood to be measured relative to Bσeh. We
set µB = ~ = kB = 1, give energies in units of D = 1
throughout, and assume T,B � Γ� U,Ueh � D � εhσ̄.
The electron-hole recombination rate is assumed to be
negligibly small compared to all other energy scales.

We focus on the case, illustrated in Fig. 1(a,b), where
the e-level is essentially empty in the initial state and
singly-occupied in the ground state of the final Hamil-
tonian, n̄i

e ' 0 and n̄f
e ' 1. (Here n̄ae =

∑
σ n̄

a
eσ, and
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FIG. 2: Log-log plot of the absorption lineshape Aσ(ν) for
T � TK, B = 0 and H f=SEAM (for which ησ = 1

2
), show-

ing three distinct functional forms for high, intermediate and
small detuning, labeled FO, LM and SC, respectively, accord-
ing to the corresponding fixed points of the Anderson model.
Arrows and light yellow lines indicate the crossover scales
T , TK and |εfeσ|. Fixed-point perturbation theory (FPPT,
red dashed lines, from Eq. (3)) and NRG (thick blue line for
Γi 6= 0; thin blue line for Γi = 0) agree well. Inset: Aσ(ν) for
five temperatures in semi-log scale, obtained from FPPT for
Γi = 0 (dashed lines, from Eq. (7)) and NRG (solid lines).

n̄aeσ = 〈neσ〉a is the thermal average of neσ with re-
spect to Ha.) This requires εi

eσ � Γ, and −U + Γ .
εf

eσ . −Γ. The Kondo temperature accociated with H f

is TK =
√

ΓU/2e−π|ε
f
e(εfe+U)|/(2UΓ). If εf

eσ = −U/2, so
that n̄f

e = 1, then H f represents the symmetric excitonic
Anderson model, to be denoted by writing H f=SEAM.

Absorption lineshape. Absorption sets in once ωL ex-
ceeds a threshold frequency, say ωth. By Fermi’s golden
rule the lineshape at temperature T and detuning ν =
ωL−ωth is proportional to the spectral function (see [16])

Aσ(ν) = 2π
∑
mm′

ρi
m|f〈m′|e†σ|m〉i|2δ(ωL − Ef

m′ + Ei
m).

(2)

Here |m〉a and Eam are exact eigenstates and -energies
of Ha, depicted schematically in Fig. 1(c), and ρi

m =
e−E

i
m/T /Z i the initial Boltzmann weights. The threshold

frequency evidently is ωth = Ef
G−Ei

G (EaG is the ground
state energy of Ha), which is on the order of εf

eσ + εhσ̄

(up to corrections due to tunneling and correlations).
We calculated Aσ(ν) using Wilson’s Numerical Renor-

malization Group (NRG) method [13], generalizing the
approach of Ref. [8, 14] to T 6= 0 by following Ref. [15].
The inset of Fig. 2 shows a typical result: As temperature
is gradually reduced, an initially rather symmetric line-
shape becomes highly asymmetric, dramatically increas-
ing in peak-height as T → 0. At T = 0, the lineshape
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displays a threshold, vanishing for ν < 0 and diverging
as ν tends to 0 from above. Fig. 2 analyzes this diver-
gence on a log-log plot, for the case that T , which cuts off
the divergence, is smaller than all other relevant energy
scales. Three distinct functional forms are discernible in
the regimes of “large”, “intermediate” or “small” detun-
ing, labeled (for reasons discussed below) FO, LM and
SC, respectively (given here for H f=SEAM):

|εf
eσ| . ν . D : AFO

σ (ν) =
4Γ
ν2

θ(ν − |εf
eσ|) ; (3a)

TK . ν . |εf
eσ| : ALM

σ (ν) =
3π
4ν

ln−2(ν/TK); (3b)

T . ν . TK : ASC
σ (ν) ∝ T−1

K (ν/TK)−ησ . (3c)

The remarkable series of crossovers found above are
symptomatic of three different regimes of charge and spin
dynamics. They can be understood analytically using
fixed point perturbation theory (FPPT). To this end, note
that at T = 0 the absorption lineshape can be written as

Aσ(ν) = 2 Re
∫ ∞

0

dt eitν+ i〈G|eiH̄
iteσe

−iH̄f te†σ|G〉i , (4)

where H̄a = Ha − EaG and ν+ = ν + i0+. Thus it
directly probes the post-quench dynamics, with initial
state e†e|G〉i, of a photo-generated e-electron coupled to
a FR. Evidently, large, intermediate or small detuning,
corresponding to ever longer time scales after absorption,
probes excitations at successively smaller energy scales
(see Fig. 1c), for which H̄ f can be represented by expan-
sions H∗r +H ′r around the three well-known fixed points
[13] of the AM: the free orbital, local moment and strong-
coupling fixed points (r = FO,LM,SC), characterized by
charge fluctuations, spin fluctuations and a screened spin
singlet, respectively, as illustrated in Fig. 1(d).

Large and intermediate detuning – perturbative regime.
For large detuning, probing the time interval t . 1/|εf

eσ|
immediately after absorption, the e-level appears as a
free, filled orbital perturbed by charge fluctuations, de-
scribed by [13] the fixed point Hamiltonian H∗FO = Hc +
H f

e +const. and the relevant perturbation H ′FO = Ht. In-
termediate detuning probes the times 1/|εf

eσ| . t . 1/TK

for which real charge fluctuations have frozen out, result-
ing in a stable local moment; however, virtual charge fluc-
tuations still cause the local moment to undergo spin fluc-
tuations, which are not yet screened. This is described
by [13] H∗LM = Hc + const. and the RG-relevant pertur-
bation H ′LM = J(ν)

ρ ~se · ~sc. Here ~sj = 1
2

∑
σσ′ j†σ~τσσ′jσ′

(for j = e, c) are spin-operators for the e-level and con-
duction band, respectively (~τ are Pauli matrices), and
J(ν) = ln−1(ν/TK) is an effective, scale-dependent di-
mensionless exchange constant.

For r = FO and LM, Aσ(ν) can be calculated using
perturbation theory in H ′r. For T = 0, note that

Aσ(ν) = −2 Im i〈G|eσ
1

ν+ − H̄ f
e†σ|G〉i , (5)

set H̄ f → H∗r + H ′r and expand the resolvent in powers
of H ′r. One readily finds (see [16])

Arσ(ν) ' − 2
ν2

Im i〈G|eσH ′r
1

ν+ −H∗r
H ′re

†
σ|G〉i , (6)

which reveals the relevant physics: Large detuning (r =
FO) is described by the spectral function of the operator
Hte

†
σ; the absorption process can thus be understood as

a two-step process consisting of a virtual excitation of
the QD resonance, followed by a tunneling event to a fi-
nal free-electron state above the Fermi-level. In contrast,
intermediate detuning (r = LM) is described by the spec-
tral function of ~sc · ~see

†
σ, i.e. it probes spin fluctuations.

Evaluating these spectral functions is elementary since
H∗FO and H∗LM involve only free fermions. For B = 0
and |εf

eσ| = 1
2U , we readily recover Eqs. (3a) and (3b)

(see [16]), which quantitatively agree with the NRG re-
sults of Fig. 2. – Though the latter was calculated for
H f=SEAM, Eq. (3b) holds more generally as long as H f

remains in the LM-regime, with n̄f
e ' 1; then ALM

σ (ν)
depends on εf

eσ, U and Γ only through their influence on
TK, and hence is a universal function of ν and TK.

The FPPT strategy for calculating FO and LM line-
shapes can readily be generalized to finite temperatures
[12], using the methods of Ref. [17] (Section III.A) for
finding the finite-T dynamic magnetic susceptibility [16].
For |ν| � |εf

eσ| and max[|ν|, T ]� TK, we obtain

ALM
σ (ν) =

3π
4

ν/T

1− e−ν/T
γKor(ν, T )/π
ν2 + γ2

Kor(ν, T )
, (7)

where γKor(ν, T ) = πT/ ln2[max(|ν|, T )/TK] is the scale-
dependent Korringa relaxation rate [17]. It is smaller
than T by a large logarithmic factor, implying a narrower
and higher absorption peak than for thermal broadening.

Small detuning and Kondo-edge singularity – strong-
coupling regime. As ν is lowered through the bottom
of the LM regime, J(ν) increases through unity into the
strong coupling regime, and Aσ(ν) monotonically crosses
over to the SC regime. It was first studied for the present
model (for B = 0) in Ref. [8], which found a power-law
lineshape of the form (3c), characteristic of a Fermi edge
singularity, with an exponent η that followed Hopfield’s
rule [18]. The power-law behavior reflects Anderson or-
thogonality [19, 20]: it arises because the final ground
state |Gf〉 that is reached in the long-time limit is char-
acterized by a screened singlet. The singlet ground state
induces different phase shifts (as indicated in Fig. 1(d) by
wavy lines) for FR electrons than the unscreened initial
state just after photon absorption, e†σ|Gi〉, and hence is
orthogonal to the latter. It is straightforward to gener-
alize the arguments of Refs. [8, 18] to the case of B 6= 0
(see [16]). One readily finds the generalized Hopfield rule

ησ = 1−
∑
σ′

(∆n′eσ′)2 , (8)
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FIG. 3: Asymmetric magnetic-field dependence of the line-
shape for H f=SEAM and T = 0. (a) Depending on whether
the electron is photoexcited into the “lower” or “upper” of
the Zeeman-split e-levels (σgeB < 0 or > 0, solid or dashed
lines, respectively), increasing |B| causes the near-threshold
divergence, Aσ(ν) ∝ ν−ησ , to be either strengthened, or sup-
pressed via the appearance of a peak at ν ' σgeB, respec-
tively. (The peak’s position is shown by the red line in the
σgeB-ν plane.) (b) Universal dependence on geB/TK of the
local moment mf

e (dash-dotted line), and the corresponding
prediction of Hopfield’s rule, Eq. (8), for the infrared expo-
nents ηlower (solid line) and ηupper (dashed line) for σ = +.
Symbols: η+-values extracted from the near-threshold ν−η+

divergence of A+(ν). Symbols and lines agree to within 1 %.

where ∆n′eσ′ = δσσ′ − ∆neσ′ is the displaced charge of
electrons with spin σ′, in units of e, that flows from the
scattering site to infinity when e†σ|Gi〉 is changed to |Gf〉,
and ∆neσ′ = n̄f

eσ′−n̄i
eσ′ is the local occupation difference

between |Gf〉 and |Gi〉.
According to Eq. (8), ησ can be tuned not only via

gate voltage but also via magnetic field, since both mod-
ify εaeσ and hence ∆n′eσ′ . This tunability can be ex-
ploited to study universal aspects of Anderson orthog-
onality physics. In particular, if the system is tuned such
that n̄i

e = 0 and n̄f
e = 1 at B = 0, Eq. (8) can be ex-

pressed as ησ = 1
2 + 2mf

eσ − 2(mf
e)2, where the final

magnetization mf
e = 1

2 (n̄f
e+ − n̄f

e−) is a universal func-
tion of geB/TK. The exponents ησ then are universal
functions of geB/TK, with simple limits for small and
large fields (see Fig. 3b): ησ → 1

2 for |geB| � TK, while
ηlower/upper → ±1 for |geB| � TK. Here the subscript
“lower” or “upper” distinguishes whether the spin-σ elec-
tron is photo-excited into the “lower” or “upper” of the
Zeeman-split pair (σgeB < 0 or > 0, respectively). The
sign difference ±1 for ησ arises since these cases yield
fully asymmetric changes in local charge: ∆ne,lower → 1
while ∆ne,upper → 0. As a result, Anderson orthogo-

nality [19] is completely absent (∆n′eσ′ = 0) for photo-
excitation into the “lower” level, since subsequently the
e-level spin need not adjust at all. In contrast, it is max-
imal (∆n′eσ′ = 1) for photo-excitation into the “upper”
level, since subsequently the e-level spin has to create a
spin-flip electron-hole pair excitation in the FR to reach
its long-time value. It follows, remarkably, that a mag-
netic field tunes the strength of Anderson orthogonality,
implying a dramatic asymmetry for the evolution of the
lineshape Aσ(ν) ∝ ν−ησ with increasing |B| (Fig. 3a).

Conclusions. We have shown that optical absorp-
tion in a single quantum dot can implement a quantum
quench in an experimentally accessible solid-state system
that allows the emergence of Kondo correlations and An-
derson orthogonality to be studied in a tunable setting.
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