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We derive a phenomenological theory of current-induced staggered magnetization dynamics in
antiferromagnets. The theory captures the reactive and dissipative current-induced torques and the
conventional effects of magnetic fields and damping. A Walker ansatz describes the dc current-
induced domain-wall motion when there is no dissipation. If magnetic damping and dissipative
torques are included, the Walker ansatz remains robust when the domain-wall moves slowly. As in
ferromagnets, the domain-wall velocity is proportional to the ratio between the dissipative-torque
and the magnetization damping. In addition, a current-driven antiferromagnetic domain-wall ac-
quires a net magnetic moment.

PACS numbers:

In ferromagnets, a spin-polarized current can be used
to manipulate magnetization via the exchange interac-
tion. A misalignment between the polarization of the
current and the local magnetization direction causes a
spin-transfer torque (STT) on the magnetization because
of noncollinear spins that precess within the ferromag-
net. This effect was first theoretically predicted by Slon-
czewski and Berger [1] and has since garnered abundant
experimental evidence (for a review, see Ref. [2]). The
STT effect is the reciprocal process of the charge currents
that are induced by a time-varying magnetic texture [3].
A promising commercial application of the STT effect
utilizes the spin-polarized currents to switch the ferro-
magnetic layers in spintronic devices, such as in magnetic
random-access memory or to induce magnetic precession
for use in high-frequency oscillators in wireless commu-
nication devices.

Antiferromagnets are ordered spin systems in which
the magnetic moments of all electrons in each unit cell
compensate for each other in equilibrium. Recent the-
oretical [4, 5] and experimental [6] works indicate that
current-induced torque effects also appear in antiferro-
magnets. Antiferromagnets also share another trans-
port property with ferromagnets; namely, the anisotropic
magnetoresistance (AMR) effect [7]. The antiferromag-
netic AMR effect allows for a detailed experimental study
of the current-induced switching of the antiferromagnetic
layers and the motion of the spatially dependent antifer-
romagnetic textures. Therefore, antiferromagnets may
be an alternative to ferromagnets for use in spintronics
devices.

Magnetization dynamics in ferromagnets is described
by the Landau-Lifshitz-Gilbert (LLG) equation, which
has been extended to include STT [8]. In magnetic tex-
tures, a spin-polarized current contributes two different
terms to the LLG equation of motion: a reactive torque
term and a dissipative torque term [8]. The reactive
torque term preserves the macroscopic time-reversal in-
variance of the equation. This term arises from the out-
of-equilibrium spin density that is induced by drifting

electrons, which have spins that are adiabatically guided
by the magnetic texture. The dissipative torque breaks
the time-reversal symmetry and arises from the spin-
dephasing processes.

The effect of the reactive STT on the staggered mag-
netization in antiferromagnets was recently discussed in
Ref. [5]. The torque has the same physical origin as that
in ferromagnets. Based on the form of the dissipative
STT in ferromagnets, Ref. [5] also makes an educated
guess about the form of the dissipative STT in antiferro-
magnets.

In the present paper, we develop a general phenomenol-
ogy that describes the coupled dynamics of currents and
the staggered order parameter in isotropic antiferromag-
nets to the lowest order in spin-texture gradients and pre-
cession frequency. The antiferromagnet is treated within
the exchange approximation. For the lowest order in rel-
ativistic interactions, the exchange forces only depend on
the relative orientation of the spins. This approximation
is a good starting point for many conventional ferromag-
nets and antiferromagnets [9], including disordered sys-
tems. In these systems, impurities couple to the spin
degrees of freedom through random magnetic moments
or spin-orbit coupling, but impurity averaging restores
the spin-rotational and sublattice symmetries. We in-
clude the effects of damping, external magnetic fields,
and reactive and dissipative torque effects. Our results
differ from the postulated form of the dissipative torque
in Ref. [5], and we explain why. We apply our theory
to an antiferromagnetic domain-wall system, and find an
analytic solution in the low current-density regime. Sim-
ilar to ferromagnets, we find that the domain-wall veloc-
ity is proportional to the ratio between the dissipative-
torque and a bulk damping coefficient. An interesting
consequence of the current-induced motion is that the
domain-wall develops a net magnetic moment. Current-
induced staggered magnetization dynamics can thus be
observed in two ways: via the AMR effect and via the
out-of-equilibrium net magnetic moment.

Our phenomenology is based on the theory of insulat-
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ing antiferromagnets [10], which is extended to take into
account the current flow. An important aspect of our
phenomenology is the exchange approximation that im-
plies that the total energy is invariant during the simulta-
neous rotation of all the magnetic moments [10]. Subse-
quently, when considering the current-induced domain-
wall motion, we include the magnetic anisotropy phe-
nomenologically in the free energy, considering that these
anisotropy energies are very small, e.g., on the scale of
the critical temperature.

For clarity, we restrict our treatment to systems in
which each unit cell in the crystal lattice contains two
equivalent magnetic sites. In this situation, the antifer-
romagnet consists of two sublattices with magnetic mo-
ment densities m1(r, t) and m2(r, t), such that the total
magnetization is m(r, t) = m1(r, t) + m2(r, t) and the
antiferromagnetic order parameter is l(r, t) = m1(r, t) −
m2(r, t). In equilibrium and in the absence of magnetic
fields and textures, m vanishes, and l is finite and ho-
mogenous. In the following, we allow the antiferromagnet
to become distorted into metastable textured states, such
as domain-walls or vortices, but we require that the tex-
ture is smooth on the scale of relevant microscopic length
scales. The texture is parameterized by a slowly varying
unit vector n(r, t) ≡ l(r, t)/l (l ≡ |l(r, t)|). Assuming stiff
antiferromagnetic ordering, the longitudinal dynamics of
l can be neglected so that the slow dissipative dynam-
ics of the system are fully described by the directional
Néel field n(r, t) along with the transverse magnetiza-
tion m(r, t), which physically corresponds to the small
relative canting of the magnetic sublattices. Construct-
ing the phenomenological equations of motion well below
the Néel temperature, we thus impose the constraints
|n| = 1 and m · n = 0.

In addition to rotational invariance, the exchange ap-
proximation requires that the free energy and the equa-
tions of motion are invariant under the exchange of the
two sublattices [10], i.e., that they are invariant under
the transformations n(r, t) 7→ −n(r, t) and m(r, t) 7→
m(r, t). The leading-order free energy that satisfies the
appropriate symmetry requirements is thus [10] F =
∫

dr
[

am2/2 + A
∑

i=x,y,z (∂in)
2
/2 − H · m

]

. Here, we

expanded the free energy to the second order in the gra-
dients and the magnetization field m(r, t), which is cou-
pled to an external magnetic field H. The equations of
motion for m(r, t) and n(r, t) are found by expanding
their slow dynamics to the lowest order in the effective
fields fn ≡ −δnF = An × (∇2

n × n) − m(H · n) and
fm ≡ −δmF = −am + n × (H× n). To enforce the
constraints |n| = 1 and m ·n = 0, we calculated the vari-
ational derivatives δmF by varying m normal to a fixed n

and δnF by parallel transporting m on the sphere that is
parameterized by n. In the absence of electric currents,

we obtain [11]

ṅ = (γfm − G1ṁ) × n , (1)

ṁ = (γfn − G2ṅ) × n + (γfm − G1ṁ) × m , (2)

where γ is the effective gyromagnetic ratio. The dissipa-
tion power P ≡ ṅ·fn+ṁ·fm = (G1/γ)ṁ2+(G2/γ)ṅ2 ≥ 0
requires that G1,2/γ ≥ 0. The nondissipative equa-
tions with G1,2 = 0 are derived in the linearized regime
in Ref. [10]. In addition to the appending dissipa-
tion, we have also added the second term in Eq. (2),
which is quadratic in small deviations from the equi-
librium, to enforce the constraint m · n = 0. Note
that such a term naturally appears if one constructs
the antiferromagnetic equations of motion out of the
ferromagnetic LLG equations of the constituent mag-
netic sublattices. Eq. (1)-(2) can be reduced to a sin-
gle equation for the Néel field (without dissipation):

n × n̈ = γ2an ×
[

A∇2
n − H (H · n) /a + Ḣ × n/γa

]

−

2γ (H · n) ṅ. This equation agrees with the equation
that is derived in Ref. [9] from the Lagrangian density

L = (ṅ/γ − H× n)
2
/2a − A (∇n)

2
/2.

We also make use of the linearized equations in the
Landau-Lifshitz form:

ṅ = γ̃(fm × n + G1fn) , ṁ = γ̃(fn × n + G2fm) , (3)

where γ̃ ≡ γ/ (1 + G1G2). The Onsager reciprocity re-
lations between the two fields require the gyromagnetic
ratios to be the same in the two equations (see below).

The equations (1) and (2) describe the evolution of
an electrically open antiferromagnet. Next, we include
the effect of itinerant electrons on the long-wavelength
dynamics of n(r, t) and m(r, t) by adding torque terms
that arise from the currents that are induced by an ex-
ternal electric field E. To this end, we are guided by
the rotational symmetry requirements and the Onsager
reciprocity relations. The Onsager reciprocity relations
apply to a system that is described by several param-
eters {qi|i = 1, . . . , N} for which the rate of change q̇i

is induced by the thermodynamic forces fi ≡ −∂qi
F ,

and state that the off-diagonal linear response coeffi-
cients in the equations q̇i =

∑N

j=1 Lijfj are related by
Lij(H,M) = ǫiǫjLji(−H,−M), where ǫi = 1 (ǫi = −1)
if qi is even (odd) under time reversal. Here, M repre-
sents any possible equilibrium magnetic order. The fields
that describe the collective magnetic dynamics in the an-
tiferromagnet are n(r, t) and m(r, t), and the associated
conjugate forces are fn and fm, respectively. In the diffu-
sive regime, the charge transferred by the current-density
 is conjugate to the electric field such that fq = E. The
response coefficients that are needed are the response
matrices Ln,q and Lm,q, which describe the dynamics
of n and m that are induced by the electric field. Be-
cause the magnetization is odd and the charge is even
under the time reversal, Onsager’s theorem implies that
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Lni(mi),qj
(n,m) = −Lqj ,ni(mi)(−n,−m), where Lq,n(m)

describes the charge currents that are pumped by fn (fm),
and the (±n,±m) arguments denote an equilibrium tex-
ture.

To derive the STT terms, it is convenient to be-
gin by phenomenologically constructing the magnetically
pumped charge current 

pump, which yields Lq,n(m), and
then invoke Onsager’s theorem to obtain Ln(m),q. For the
lowest order of the space-time gradients and the magne-
tization field m, we can write three pumping terms that
satisfy the appropriate exchange and spatial symmetries:
n·(ṁ × ∂in), ṅ·∂in, and n·(ṅ× ∂im). However, because
the last term is quadratic in the small deviations from an
equilibrium state (in the absence of magnetic fields), we
disregard it in the following. Thus, the leading-order phe-
nomenological expression for the pumped charge current
is as follows:

pump
i /σ = η n · (ṁ × ∂in) + β ṅ · ∂in

= γ̃ [(η + G1β)∂in · fn + (β − G2η)n × ∂in · fm] , (4)

where we have utilized Eq. (3) and have scaled the cur-
rent density with the conductivity σ. Here, η (β) is a
phenomenological parameter. Later, it becomes clear
that η (β) parameterizes the adiabatic (non-adiabatic)
torque because the term is even (odd) under time re-
versal. Eq. (4) yields the response coefficients Lqi,nj

=
σγ̃(η+G1β)∂inj and Lqi,mj

= σγ̃(β−G2η)(n×∂in)j . Us-
ing the Onsager reciprocity relations and Ohm’s law for
the drift current ( = σE), leads to the STT terms τ n =
γ̃(η+G1β)( ·∇)n and τm = −γ̃(β−G2η)n×( ·∇)n for
the Néel and the magnetization field, respectively, which
are added on the right side of the equations of motion
in Eq. (3). Transforming these torques back to the LLG
form of the equations, i.e., Eqs. (1) and (2), yields the
following:

ṅ = (γfm − G1ṁ) × n + ηγ( · ∇)n , (5)

ṁ = [γfn − G2ṅ + βγ ( · ∇)n] × n + τnl . (6)

τnl = (γfm − G1ṁ) × m − ηγ [m · ( · ∇)n]n are the
simplest nonlinear terms that are added here to enforce
the constraint m ·n = 0. We disregard such higher-order
terms in the following.

From now on we use the simplified notation for the
effective forces [11], which allows to more readily solve
for m in terms of n. Combining Eqs. (5) and (6), we see
that the magnetization field is fully determined by the
order parameter n and its dynamics:

m =
1

a

[

n × H +
1

γ̃
ṅ − G1fn − (η + G1β)( · ∇)n

]

× n .

(7)
Substituting this into Eq. (6) allows us to derive a closed
equation for the Néel field to the linear order in the out-

of-equilibrium deviations m, ∂tn, , and H [12]:

n̈/γ̃ = − n × Ḣ + G1ḟn + (η + G1β)(̇ · ∇)n

+ a [γfn − G2ṅ + γβ( · ∇)n] . (8)

Eq. (4)-(8) are our main results, which describe a gen-
eral phenomenological theory of weakly excited current-
induced dynamics in conducting antiferromagnets and
charge pumping that arises from moving textures. The
reactive torque in Eq. (8), which is proportional to
(η + G1β), was first found in Ref. [5]. The dissipative
torque term, which is proportional to aβ, and the ef-
fects of magnetization damping are new terms that have
not been derived before. The consideration of the charge
pumping that occurs when moving antiferromagnetic tex-
tures is also new. Ref. [5] suggests a dissipative torque of
the form βn× (̇ ·∇)n in Eq. (8). This term breaks the
n 7→ −n invariance of the equation and therefore can-
not appear in the exchange approximation of equivalent
magnetic sublattices.

As an application of our theory, we consider an anti-
ferromagnetic domain-wall system and study the current-
induced domain-wall motion. For clarity, we set the ex-
ternal magnetic field to equal zero from this point of the
paper on. Domain-walls can be created in systems with
anisotropy, which is added phenomenologically to the free
energy as follows: F [m,n] → F [m,n] + W [n], where
W [n] =

∫

dr
(

K⊥n2
y/2 − Kzn

2
z/2

)

is the anisotropy en-
ergy (K⊥, Kz > 0). A local minima of the above en-
ergy functional is a Néel wall that rotates in the xz
plane, where the local magnetization direction is nx =
1/ cosh(z/λw) and nz = tanh(z/λw). λw =

√

A/Kz is
the domain-wall width. This equilibrium domain-wall
texture is denoted by n0(r, t) below.

In the following, we study how the domain-wall moves
in response to a current along the z axis. Let us first con-
sider the case of no magnetization damping and β = 0.
In this case, it follows from Eq. (5)-(6) that m(r, t) = 0
and n(r, t) = n0(z − rw(t)) is an exact solution of the
equations, with the domain-wall velocity ṙw = −γη.
By including the magnetization damping and the dis-
sipative torque, a local magnetic moment density devel-
ops. The torque τm = −γ̃ (β − G2η)n × ∂zn induces
a magnetic moment density along the y-axis that should
eventually approach a finite value due to the opposite
acting damping term G2fm in Eq. (3). Thus, to find
a stationary solution for Eq. (5)-(6), we use the ansatz
n(r, t) = n0(z−rw(t)) and m(r, t) = m0(t)n×∂zn. Here,
m0(t) parameterizes the magnitude of the local magnetic
moment density. Substituting these two expressions into
Eq. (5)-(6), produces the following equations for the two
parameters rw(t) and m0(t):

ṙw = γ̃ [am0 − (η + G1β) ] , (9)

ṁ0

γ̃
= (G2η − β)  − G2a

(

1 +
ṙwnz

γ̃G2aλw

)

m0. (10)
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The second term inside the last parenthesis in Eq. (10)
is position-dependent because of nz. When this term
is negligible, the ansatz becomes a good approximation
of Eq. (9)-(10). This low current-density regime corre-
sponds to systems for which the characteristic intrin-
sic relaxation time (γ̃G2a)−1 of the antiferromagnetic
system is much smaller than the timescale λw/ṙw; i.e.,
the domain-wall moves a small distance as compared
to the domain-wall width during the relaxation time.
In this regime, m0 approaches a finite stable value of
m0 = − (β − G2η) / (G2a), and the domain-wall moves
at a constant velocity ṙw = −γβ/G2. Similarly to that
for ferromagnets, the velocity is proportional to the ra-
tio between the dissipative torque and a Gilbert damp-
ing coefficient. In contrast to ferromagnets, this result
is independent of the uniaxial anisotropy K⊥ such that
the Walker ansatz has a much wider range of applicabil-
ity. An interesting consequence of the current-induced
domain-wall motion is that the system develops a finite
magnetic moment in the domain-wall region. This effect
may be an alternative to the AMR effect for the mea-
surement of domain-wall motion.
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FIG. 1: The blue line shows the domain-wall velocity, which
was determined using a micromagnetic simulation, as a func-
tion of time when a current is applied at t = 0. The
velocity follows the analytic expression in Eq. (9) and ap-
proaches the stationary value ṙw = −γβ/G2. Inset: The
time evolution of m0. The parameter approaches the sta-
tionary value m0 = − (β − G2η) / (G2a). All of the re-
sults are given in dimensionless quantities. a∗ = al/A∗, and
p∗ =  (η + G1β) / (alA

∗).

To verify that the system approaches the above sta-
tionary solution in the relevant regime, we conducted
a micromagnetic simulation of a one-dimensional sys-
tem based on Eq. (5)-(6). For the numerical calcula-
tion, we wrote the equations in a dimensionless form
by scaling the z axis with the lattice constant al and
the time axis with (γ̃A∗)−1. Here, A∗ = A/

(

la2
l

)

.
We considered a domain-wall system with a domain-

wall width of λw = 20al. The anisotropy and damp-
ing parameters are al/A∗ = 10, Kz/ (lA∗) = (20)−2,
K⊥/ (lA∗) = 0.1 and G1l = G2/l = 0.01. For the STT
torque parameters we used  (η + G1β) / (alA

∗) = 0.1
and  (β − G2η) / (alA

∗l) = 0.001. With these values,
the stationary solution implies that m∗

0 = m0/ (all) will
approach 0.01 and that the wall will move a distance of
2al during the relaxation time (γ̃G2a)−1. We therefore
expect the system to be in the relevant regime for which
the stationary solution is valid.

Fig. 1 shows the micromagnetic simulation of the above
system. We see that the domain-wall velocity follows
Eq. (9) nearly perfectly and that velocity and m0 ap-
proach the expected stationary values. It should be noted
that our ansatz breaks down when (γ̃G2a)−1 is not much
smaller than λw/ṙw; however, a more detailed study of
this regime is beyond the scope of this manuscript.

The typical values of the β/G-ratio in antiferromagnets
is an interesting issue for future experiments. This ratio
can be probed by measuring the domain-wall velocity as
a function of the current density or by measuring the
reciprocal process, which is voltage that is induced by a
moving domain-wall.

In conclusion, we have derived a general phenomeno-
logical theory of current-induced dynamics in antiferro-
magnets and have applied the theory to the study of
current-induced domain-wall motion. We found that the
domain-wall developed a net magnetic moment during
the current-induced motion and that the domain-wall ve-
locity was proportional to the ratio between the dissipa-
tive torque parameter and a damping parameter.
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[12] Note that the dynamics of n(t) depends on m(t = 0)
through the initial condition for ṅ(t = 0).


