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polarization-magnetization coupling
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First-principles calculations are presented for the layered perovskite Ca3Mn2O7. The results
reveal a rich set of coupled structural, magnetic and polar domains in which oxygen octahedron
rotations induce ferroelectricity, magnetoelectricity and weak-ferromagnetism. The key point is
that the rotation distortion is a combination of two non-polar modes with different symmetries. We
use the term “hybrid” improper ferroelectricity to describe this phenomenon and discuss how control
over magnetism is achieved through these functional antiferrodistortive octahedron rotations.

PACS numbers: 75.80.+q,77.80.-e,81.05.Zx

The utility of multiferroics for low-power electronic de-
vices stems from the possibility for electric-field control
of magnetism at room temperature [1, 2]. A challenge
that has so far not been overcome is to identify a stable,
single phase multiferroic material in which the magneti-
zation can be deterministically switched 180◦. A large
electrical polarization strongly coupled to the magneti-
zation is generally thought to be a key requirement [3].

Magnetically-driven improper ferroelectrics, such as
TbMnO3, are materials in which a spontaneous polariza-
tion arises due to symmetry-breaking by a spin instabil-
ity [4]. These materials naturally have a strong coupling
between magnetism and the polarization, but the polar-
ization is too small for device applications. In known
multiferroic materials with a large electrical polarization,
such as BiFeO3 [5], the ferroelectricity is proper, origi-
nating from a zone-center polar lattice instability, as in
the prototypical perovskite ferroelectric PbTiO3. How-
ever, except in a few special cases that satisfy restrictive
symmetry criteria, the polar instability in a proper ferro-
electric does not break the right symmetries to turn on a
nonzero magnetization and therefore does not satisfy the
criteria of the only known mechanism that enables the
electric field switching of the magnetization [6].

It is desirable to identify a more general mechanism
– applicable to a large class of materials, for example,
the ABO3 perovskites – whereby ferroelectricity and fer-
romagnetism are induced by the same lattice instability.
Octahedron rotations, ubiquitous in perovskites and re-
lated materials, are natural candidates for this lattice in-
stability as they are known to strongly couple to magnetic
properties [7–9]. Unfortunately, such distortions (or com-
binations of distortions) in simple perovskites are not po-
lar and therefore do not induce ferroelectricity. Recently,
however, Bousquet, et al. [10] made a key discovery that
by layering perovskites in an artificial superlattice, e.g.,
(SrTiO3)/(PbTiO3), a polarization can arise from the
coupling of two rotational modes. Taking advantage of
this mechanism to realize a strongly coupled multiferroic
is a challenge.

In this Letter, we demonstrate how octahedron ro-

tations simultaneously induce ferroelectricity, magneto-
electricity, and weak ferromagnetism in a class of natu-
rally occurring (ABO3)2(AO) layered perovskites. The
key point is that the polarization, P , arises from a ro-
tation pattern that is a combination of two non-polar
lattice modes with different symmetries, P ∼ R1R2,
as in Ref. 10, but here rotations R1 and R2 addition-
ally induce magnetoelectricity and weak ferromagnetism
respectively. We use the term “hybrid” improper fer-
roelectricity to describe this ferroelectric mechanism (in
loose analogy to improper ferroelectricity [11] such as in
YMnO3 [12]) in order to generalize the idea to include
cases where the two distortion patterns do not necessar-
ily condense at the same temperature. This mechanism
has no impediment to room temperature operation and
in fact opens up entirely new classes of materials in which
to search for strongly-coupled multiferroics. Our results
show a rich set of coupled structural, magnetic and polar
domains and suggest the possibility to switch between
magnetic domains with an electric field.

We have identified (CaBO3)2CaO, with B=Ti [13],
Mn [14, 15], as two materials that display hybrid im-
proper ferroelectricity. It is significant that they occur in
nature in bulk, forming in the Ruddlesden-Popper (RP)
homologous family with general formula An+1BnO3n+1.
Any given member of the RP series consists of ABO3

perovskite blocks stacked along the [001] direction with
an extra AO sheet inserted every n perovskite unit cells.
For Ca3Mn2O7 (n = 2) the experimental picture of
the sequence of phase transitions from the paraelec-
tric I4/mmm phase to the ferroelectric A21am phase
is not clear. Two possibilities have been proposed: (1)
I4/mmm → Cmcm → A21am, and (2) a direct transi-
tion from I4/mmm → A21am. Additionally, it has been
shown to display weak ferromagnetism [15, 16]. To our
knowledge, Ca3Ti2O7 has only been reported in the po-
lar A21am structure. In the remainder of this Letter, we
focus mainly on the magnetic compound, Ca3Mn2O7, as
a prototype of this class of strongly coupled multiferroics.

First-principles calculations were performed using
DFT using PAW potentials within LSDA+U [17] as im-
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FIG. 1: Ca3Mn2O7 structure and rotation distortions. a,
The A21am ferroelectric ground state structure. Blue (large)
spheres correspond to Ca ions. b Schematic of the atomic
displacements corresponding to the X+

2 rotation. The dashed
square denotes the unit cell of the I4/mmm parent struc-
ture. c, Schematic of the X−

3 tilt mode. All axes refer to the
coordinate system of the I4/mmm parent structure.

plemented in VASP [18, 19]. All calculations were re-
peated within PBEsol+U, which provides an improved
description of structural parameters; there was no quali-
tative change in any of our results. We used U = 4.5 eV
and JH=1 eV for the Mn-ion on-site Coulomb and ex-
change parameters respectively, common values for Mn4+

oxides (the results do not change for reasonable variations
of U). Where noted, non-collinear calculations with L-S
coupling were performed. We used a 600eV plane wave
cutoff, a 4×4×2 Monkhorst-Pack mesh.

In the polar A21am structure, the oxygen octahedra
are significantly rotated and tilted with respect to the
I4/mmm structure, as shown in Figure 1. The polariza-
tion, in the xy−plane by symmetry, is found from our
first-principles calculations to be large, P ≈ 5 µC/cm2

(P ≈ 20 µC/cm2 for Ca3Ti2O7). Group theoretical
methods show that A21am is related to I4/mmm by
three distinct atomic distortions: a polar zone-center
mode transforming like the irreducible representation (ir-
rep) Γ−

5 , and two zone-boundary modes at the X (1/2,
1/2, 0) point – an oxygen octahedron rotation mode with
irrep X+

2 and an oxygen octahedron tilt mode with irrep
X−

3 . Note that X+
2 ⊕ X−

3 establishes the A21am space
group, a zone-center polar instability is not required.
Hence, it is possible to reach the ferroelectric state by
means of a combination of rotations and tilts only.

We project out the contribution of each X−

3 , X+
2 , and

Γ−

5 mode to the A21am ground state structure and calcu-
late from first principles the T = 0 energy surface around
the I4/mmm reference structure. Figure 2a shows the to-
tal energy as a function of the amplitude of the distortion
for the individual rotation (Q

X
+

2

), tilt (Q
X
−

3

), and polar

(Q
Γ
−

5

) distortions. Relatively large energy gains can be
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FIG. 2: Energy surface about paraelectric I4/mmm in
Ca3Mn2O7. Change in energy per formula unit as a function
of the amplitude of a, the X+

2 tilt and X−

3 rotation modes and
b, the polar Γ−5 distortion. c and d, Polarization in the pres-
ence of a hybrid order parameter, QX23

=λQ
X
−

3

Q
X

+
2

. Note

the differences in scales between panels.

seen within a characteristic double-well potential for the
rotation and tilt distortions, whereas the polar contribu-
tion is stable, as shown in Figure 2b. Additionally, Figure
3 shows that the combination of Q

X
+

2

plus Q
X
−

3

lowers

the energy – even in the absence of the Q
Γ
−

5

distortion –

resulting in a ground state with four structural domains.
Figure 2c,d shows how the polarization arises from

a coupling to a “hybrid” order parameter QX23
=

Q
X

+

2

Q
X
−

3

. In the absence of rotation and tilt distor-

tions (QX23
=0), the polarization has a single minimum

at P =0. As QX23
increases, the polarization never be-

comes unstable. Rather, the minimum shifts to a non-
zero value. The result of increasing QX23

is analogous to
the effect of turning on a finite electric field, just like in
the classic case of improper ferroelectricity [11]. Further-
more, when QX23

6= 0, the polarization is linear about
zero (Figure 2d), a direct indication of improper coupling

F = αPQ
X

+

2

Q
X
−

3

between the polarization, rotations, and tilts.
These observations suggest that the rotation mode and

the tilt mode are the primary modes driving the transi-
tion to the ferroelectric A21am phase. This single distor-
tion pattern, QX23

, is the hybrid improper mode. In con-
trast to proper and conventional improper ferroelectrics,
more than one lattice distortion may switch the polar-
ization in a hybrid improper ferroelectric. Symmetry im-
plies, and our calculations confirm, that the polarization
reverses by either switching a X+

2 distortion or a X−

3

distortion but not both, resulting in two polar domains.
As is often the case in perovskites and related mate-
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FIG. 3: Four types of structural domains and possible paths
for electric-field switching of the magnetization in Ca3Mn2O7.
a, Unstrained (bulk): Starting from a fixed X−

3 tilt domain,
switch polarization by switching X+

2 rotation: P0 → −P0 and
M0 → M0. b, Compressive biaxial strain: Start from a fixed
X+

2 rotation domain, switch polarization by switching X−

3

tilts: P0 → −P0 and M0 → −M0. The energy change is per
formula unit.

rials, octahedron rotations directly couple to the mag-
netic ordering. We determined from first principles the
magnetic ground state of A21am Ca3Mn2O7 with po-
larization along [010] to be antiferromagnetic (G-type
within the perovskite bilayer). The spins point along
[001] due to crystalline anisotropy. Additional spin-orbit
interactions give rise to a net spin-canted moment of
M ≈ 0.18µB per unit cell (4 spins) along [100]. These
results are consistent with previous experiments. Note
that the magnetic point group, 2′mm′, allows for a lin-
ear magnetoelectric effect [3], which symmetry indicates
is induced by the X+

2 rotation distortion. Application
of Dzyaloshinskii’s criteria [20, 21] shows the canted mo-
ment is the result of the X−

3 tilt distortion. Indeed, if we
compute the magnetic ordering in the Cmcm (Cmca)
structure obtained by freezing in the X−

3 ( X+
2 ) mode

alone, we find M ≈ 0.22µB (M = 0µB) per unit cell,
which reverses with reversal of this octahedral tilt [22]
resulting in two magnetic domains.

So which distortion, the rotation or the tilt, reverses in
an electric-field switching experiment? Although polar-
ization switching in a ferroelectric is a complex, dynamic
process, we may gain some insight by examining the in-
trinsic energy barriers between domains. As shown in
Figure 3a the lowest energy pathway to switch the direc-
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FIG. 4: Effect of epitaxial strain on the unstable zone-
boundary modes in Ca3Mn2O7. Change in energy per for-
mula unit w.r.t. paraelectric I4/mmm, as a function of the
amplitudes of the X−

3 and X+

2 modes under a, 1.5% tensile
and b, 1.5% compressive biaxial strain. The lines are a guide
to the eye (similar results were also found for Ca3Ti2O7).

tion of the polarization is along the X+
2 switching path.

In this process the magnetization does not reverse its
sign. The linear magnetoelectric effect, however, is in-
duced by the X+

2 distortion as mentioned. This electric-
field tunable oxygen rotation distortion may lead to an
enhanced magnetoelectric effect. Such calculations are
beyond the scope of this Letter, but future theoretical
and experimental studies should make this clear.

Oxygen rotations in perovskites are known to respond
strongly to pressure and epitaxial strain. Figure 3b shows
the energy landscape around the I4/mmm paraelectric
structure at 1.5% compressive strain. Now the lowest en-
ergy pathway to switch the polarization to a symmetry
equivalent state is along the X−

3 switching path, which as
previously discussed, switches the direction of the spin-
canted moment. Therefore, for an epitaxial thin film
compressively strained in the A21am phase, we predict
that switching the direction of the polarization with an
electric field will switch the direction of the equilibrium
magnetization by 180o. As in all experiments to date
based on the linear magnetoelectric effect, however, a
single antiferromagnetic domain must be annealed and
maintained throughout the experiment.

This observation of tuning the intrinsic energy barriers
between the domains with strain can be understood from
well-known simple physical considerations [23]. Figure 4
shows the behavior of the rotation and tilt distortions in
Ca3Mn2O7 under 1.5% biaxial tensile and compressive
strains. Figure 4a shows that the energy lowering of the
X+

2 rotation is strongly reduced under tensile strain com-
pared with the unstrained state shown in Figure 2a. Un-
der compressive strain, the opposite behavior occurs: the
X+

2 mode is strongly favored, lowering the energy even
more than the X−

3 tilt mode, as shown in Figure 4b. We
emphasize that strain does not induce, enhance or medi-
ate the polarization-magnetization coupling responsible
for the electric-field switching of the magnetization in
these materials. In the specific case of Ca3Mn2O7, strain
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merely alters the energy landscape around the I4/mmm
paraelectric structure, biasing one hybrid improper fer-
roelectric switching pathway (the one that simultane-
ously switches the direction of the magnetization) over
the other. However, there is no fundamental reason why
electric-field switching of the magnetization cannot be
observed in bulk hybrid improper ferroelectrics.

In addition to the measurements already suggested,
spatially resolving the structural, polar, and magnetic
domains, e.g., optically [24], should prove the coupling
physics discussed even in bulk Ca3Mn2O7. It would also
be of interest to understand the phase transition sequence
from the high-symmetry paraelectric I4/mmm phase to
the low-symmetry ferroelectric A21am phase. In bulk,
two possibilities have been proposed as we previously
discussed [25]. Path (1), having an intermediate Cmcm
phase, is consistent with Landau theory and with our cal-
culated hierarchy of structural distortions as displayed in
Figure 3a. If Path (2) turns out to be correct, however,
this indicates that the two distortions making up the hy-
brid order parameter condense at the same temperature,
analogous to the recent discovery of Ref. 10. Regardless
of the actual path taken – or even if a paraelectric struc-
ture is realizable in the phase diagram of the system – our
conclusions on the coupling of rotation/tilt distortions to
ferroelectricity and magnetism remain unchanged.

Note that the temperature scale of the hybrid improper
ferroelectric mechanism is set by the structural distor-
tions, which commonly occur above room temperature
(∼500-600K in Ca3Mn2O7 [26]). The ‘limiting’ temper-
ature in the case of Ca3Mn2O7 is the Néel temperature,
TN ∼115K [15, 16] and as such this prototype material is
not ideal. There is, however, no fundamental reason why
one couldn’t discover (or design) a hybrid improper ferro-
electric with a Néel temperature above room temperature
(ongoing investigations have realized initial materials de-
sign rules [27]), so the mechanism has no impediment
to room-temperature operation. This approach therefore
shifts the challenge of discovering a multiferroic in which
the magnetization can be controlled by the electrical po-
larization to the more familiar problem of designing a
room temperature antiferromagnet.

In summary, we have introduced the term hybrid
improper ferroelectricity to describe a state in which the
polarization is induced by a complex distortion pattern
consisting of more than one octahedron rotation mode.
We have shown how this mechanism opens up new
avenues to pursue strong polarization-magnetization
coupling, as alluded to in Ref. 10 and realized in this
Letter, and discovered a new class of materials. We hope
our Letter inspires further work in this intriguing field
of materials with functional rotations and tilt distortions.
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