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We show that the electronic part of the linear magnetoelectric response, usually omitted in first-
principles studies, can be comparable in magnitude to that mediated by polar lattice distortions,
even in strong magnetoelectrics. Using a self-consistent response to a Zeeman field for noncollinear
spins, we show how polarization emerges in magnetoelectrics through both electronic and lattice
contributions – analogous to the high- and low-frequency responses of dielectrics. The approach we
use is computationally simple, and can be used to study linear and non-linear responses to magnetic
fields.

PACS numbers: 75.85.+t, 71.15.Mb, 75.30.Cr,

Linear magnetoelectric materials respond with a
change in electric polarization to a magnetic field, and
with a change in magnetization to an electric field: Pi =
αijHj ; Mj = αijEi, with α the magnetoelectric tensor.
The research challenges in identifying materials with use-
ful linear magnetoelectric (ME) responses are threefold:
(i) Symmetry requirements that both space-inversion and
time-reversal symmetries be broken are satisfied by few
materials, (ii) materials satisfying these criteria tend to
do so only in phases that develop at relatively low tem-
peratures, and (iii) most of the MEs discovered to date
have weak responses. Recently, a number of develop-
ments have led to a significant revival of activity in
the search for novel magnetoelectric materials, includ-
ing the observation that multiferroics can have strong
ME responses[1], and the identification of the microscopic
couplings that are responsible for strong and weak ME
responses[2–6].

First-principles methods are emerging[6, 7] as a valu-
able tool for computing the strength of α in real materials
without any empirical input. The methods are becoming
sufficiently reliable to be used in a predictive capacity in
searching for new ME materials. While many approaches
have been explored or can be envisaged for computing
α, ranging from a self-consistently applied electric or
magnetic field, to quantum-mechanical perturbation the-
ory in the applied field, by far the most successful and
widely used approach to date has been a linear-response
approach based on the lattice-dynamical quantities[6–
8]. However, this approach computes only the so-called
“lattice-mediated” part of α and ignores purely electronic
contributions to the response. The common justification
is that such contributions are expected to be weak, just
as in strong dielectrics the electronic response is negli-
gible compared to the ionic contribution. In this Letter,
we demonstrate, using an alternative numerical approach
involving a self-consistently applied magnetic field, that
the purely electronic magnetoelectric response can in fact
be large, even in materials with relatively strong α in
which one might expect the response to be dominated by

lattice mechanisms. In fact, the electronic and ionic con-
tributions can be of similar magnitude and opposite sign,
which can lead to a weak total response while lattice-only
methods would predict it to be large.

We begin by defining the different contributions to α.
We define a “clamped-ion” contribution that accounts
for magnetoelectric effects occuring in an applied field
with all ionic degrees of freedom remaining frozen. This
purely electronic contribution, αel, is the response that
would be measured for high-frequency fields, in analogy
with the static-high-frequency dielectric response in in-
sulators, ǫ∞. This analogy was discussed recently in the
context of generalizing the Lyddane-Sachs-Teller (LST)
relations for magnetoelectric responses[9]. The remaining
part of the response, which emerges at low frequency so
that the ions (and in principle the lattice parameters[10])
respond to the field, we label αlatt. αlatt is the difference
between the total response and the electronic, so that
αtot = αel + αlatt, and it is the part of the response that
is accessible from linear-response theory using lattice-
dynamical quantities[7]. (Note that αlatt also includes
some electronic response through the dynamical charges).

Evaluating αel requires a full quantum-mechanical
treatment of the response, either using perturbation the-
ory or a self-consistently-applied finite field. In this work,
we use an applied magnetic field to compute α. Due to
difficulties with periodic boundary conditions when us-
ing a full vector potential in the electronic Hamiltonian,
we restrict our field to act only on the electron spin as
a self-consistent Zeeman field. This means that we omit
contributions to α that are derived from the orbital mag-
netic response[11], which are expected to be significantly
weaker than the spin-derived response for most systems.

Computational Approach: Calculations of ME re-
sponses require a treatment of noncollinear spin or-
ders. Within the Kohn-Sham framework, noncollinear-
ity is handled by generalizing the orbitals to be complex
spinors, resulting in a 2 × 2 spin-density matrix (nσσ′ )
that allows the magnetization density to vary in both
magnitude and direction throughout the system.
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In order to apply a magnetic field, we begin by
making a Legendre transform of the noncollinear-spin
Hohenberg-Kohn energy functional:

Λ
[

nσσ′ (~r) ; ~H
]

= EHK [nσσ′ (~r)] − µ0
~H.~µtot, (1)

where EHK is the usual zero-field energy functional (con-
sisting of non-interacting kinetic energy, external elec-
trostatic energy, Hartree and exchange-correlation terms,
and the Madelung energy of ion-ion interactions). ~H is
the auxiliary magnetic field applied to spin degrees of
freedom and ~µtot is the total spin magnetic moment of
the system (including the Landé g factor). The spatially
varying magnetic moment, ~µ (~r), can be found from the
four components of nσσ′ , and ~µtot is its spatial integral.
Subsequently, we variationally minimize Λ with respect
to single-particle Kohn-Sham spinor orbitals, subject to
the usual constraints on orthonormality and conserva-
tion of total particle number. The result is a term in the
Kohn-Sham potential, acting on the spinor orbitals, that
imposes the external magnetic field on the noncollinear
spin density. Practically, this term simply shifts the rela-
tive external potential for each of the four spin manifolds:

∆Vσσ′ = −

g

2
µBµ0

(

Hz Hx + iHy

Hx − iHy −Hz

)

, (2)

which is trivially compatible with periodic boundary con-
ditions, and which clearly reduces to the collinear case,
with the field providing a different Fermi level for “up”
and “down” spin channels, if ~H = (0, 0, Hz).

We implement Eq. 2 into the Vienna Abinitio Simula-
tion Package (VASP)[12]. We employ a plane-wave basis
set for expanding the electronic wave functions and den-
sity, and PAW potentials[13] are used for core-valence
separation. We note that it is important to disable sym-
metrization of the wave functions in the Brillouin zone
since application of a magnetic field leads to an elec-
tronic structure that breaks the crystal symmetry. We
self-consistently include spin-orbit coupling in all of our
calculations. This is required to obtain a magnetoelec-
tric response for those materials in which the spin-lattice
coupling derives from relativistic effects such as the an-
tisymmetric (~si × ~sj) Dzyaloshinskĭı-Moriya interaction.
All of our calculations simulate a single magnetic domain,
which corresponds to experiments in which a poling pro-
cedure has been performed. Since different antiferromag-
netic domains contribute to α with different signs, mea-
surements otherwise tend to provide a lower bound on
the single-domain response.

Transverse magnetoelectric response of Cr2O3:

Cr2O3, the first ME material to be discovered, remains
the best-studied and prototypical linear magnetoelectric.
Cr2O3 adopts space group R3̄c, with Cr and O occupying
Wyckoff orbits 4c and 6e in the rhombohedral setting.
We work with the experimental volume (95.9Å3) and
rhombohedral angle (55.13◦)[14], but fully optimize

the ion coordinates to the LDA+U ground-state (Cr:
x = 0.1536; O: x = 0.9426). For the exchange-correlation
potential, we use the Dudarev form of LSDA+U with
Ueff = 2.0 eV[7]. In the ground-state G-type antiferro-
magnetic (AFM) ordering, the free energy of the system
contains two symmetry allowed linear magnetoelectric
couplings and is of the form[15]

F = −α⊥ (ExHx + EyHy) − α‖EzHz. (3)

We note that the response parallel to the trigonal
(easy) axis, α‖, is close to zero in low-temperature
experiments[16]. This small low-T response is expected:
In the absence of quantum fluctuations and orbital con-
tributions, the low-T ME response should tend to zero
because the spin-only parallel magnetic susceptibility

vanishes at T = 0K. Our calculations, which are formally
at T = 0K and do not include quantum spin fluctua-
tions or the orbital moment, do give α‖ = 0 as expected.
The temperature dependence of α‖ has recently been ex-
plained using an alternative first-principles scheme[17].

For the transverse response, α⊥, we first compute the
electronic ME contribution with clamped ions. Upon ap-
plication of a Zeeman field perpendicular to the collinear
spin axis, the Cr spins cant so that the unit cell acquires
a net magnetization. Our calculated spin-only magnetic
susceptibility is χM

⊥ = 1.9 × 10−3 (SI dimensionless),
which compares favorably to the experimental value[18]
of 1.7 × 10−3 at 78K. With the new spin orientations
generated by the applied field, spin-orbit coupling leads
to an electric polarization. Note at this stage that the
lattice has not been permitted to relax in response to
the field. We compute the electric polarization using the
Berry phase approach[19]. The results are shown as open
squares in Fig. 1, with our calculated αel

⊥ = 0.34 ps.m−1.
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FIG. 1. (Color online) Contributions to the transverse re-
sponse α⊥ of Cr2O3, calculated using Eq. 2. The clamped-
ion response, αel (open squares) contributes approximately
one fourth of the total response (filled circles). The remain-
der of the response, computed using Born effective charges, is
due to structural distortions in the applied field (open circles).

The canting of spins in the Zeeman field also causes
spin-orbit-driven forces on ions. The induced forces are
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very small, mirroring the observed weakness of the linear
ME effect in Cr2O3, so high numerical quality must be
achieved in studying the structural distortion. We care-
fully converge our ionic forces with respect to basis-set
size (Ecut = 700 eV), k-point sampling (6 × 6 × 6), and
self-consistent field iteration. We then choose a small
tolerance to which forces are eliminated (< 5 µeV Å−1).

Once the structural distortions are found for a given
magnetic-field strength, we estimate the ionic polariza-
tion by multiplying the displacements by the full Born-
effective-charge tensor (open circles of Fig. 1). This pro-
cedure leads to the lattice-mediated ME response, αlatt

⊥ =
1.11ps.m−1. We also computed the same quantity us-
ing our parameters with the lattice-dynamical method
for αlatt introduced previously[7] and find 0.9 ps.m−1, in
reasonable agreement with the Zeeman field approach.

With the lattice distortion included for each magnetic-
field strength, we then fully recomputed the polarization
using the Berry-phase approach with the magnetic field

applied. This procedure yields the total spin-mediated
α, both electronic and lattice responses (Fig. 1, filled
circles). We find α⊥ = 1.45ps.m−1 (= 4.3 × 10−4 emu-
CGS), in excellent agreement with summing αel

⊥ and αlatt
⊥

as expected. This analysis shows that αel contributes one
fourth of the total spin-driven magnetoelectric response
of Cr2O3. The total response that we compute is in good
agreement with zero-temperature extrapolations of ex-
perimental measurements, which range[7, 20, 21] from
2—4.7 × 10−4 emu-CGS.

Off-diagonal ME response of LiNiPO4: The lithium
orthophosphates LiMPO4 (M=transition metals) are
currently attracting much interest for their potential use
as cathodes in Li-ion batteries, as well as for their large
magnetoelectric responses and the recent observation of
ferrotoroidic domains in LiCoPO4[22].

Here we focus on LiNiPO4 as a test case for the size
of the electronic ME response. LiNiPO4 has space group
Pnma with 28 atoms in the primitive unit cell and four
Ni2+ magnetic sites. We again use the experimental[23]
lattice parameters for our calculations (a = 10.032 Å,
b = 5.854 Å, c = 4.677 Å) while the ionic coordinates are
relaxed to the LDA+U ground state.

We first address the zero-field magnetic structure.
Experimentally[24], the magnetic structure has been
characterized as C-type AFM with spins oriented pre-
dominantly along the c axis, combined with a weak spin
canting of A-type AFM order along the a axis. The re-
ported zero-field canting angle, θ, for LiNiPO4 is 7.8◦.

With a plane-wave cutoff of 500 eV and 4×4×2 k-point
sampling, we qualitatively reproduce the observed mag-
netic structure in our calculations. However, the precise
canting angle is strongly sensitive to the intra-atomic J

parameter used in the Liechtenstein LDA+U procedure.
For U = 5 eV, a common value for Ni2+, the canting an-
gle θ varies from 1.6◦ to 7.6◦ as J is modified from 0.0
to 1.7 eV. Hence, a relatively large J appears to be im-

portant for quantitative agreement with the magnitude
of the reported spin canting. As discussed elsewhere[25],
the observed sensitivity arises from the double-counting
term in the LSDA+U potential, in which the off-diagonal
elements (acting on the non-collinear part of the spin
density matrix) are determined by J alone. The canting
angle is quite insensitive to our other simulation param-
eters, including the on-site Coulomb interaction, U .
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FIG. 2. (Color online) LiNiPO4 data under magnetic field ~H ‖
a: (a) Clamped-ion (black) and ionic (red) contributions to
the z polarization versus the magnetic field for different values
of the intra-atomic Hund’s coupling J . (b) Ionic polarization
versus canting angle for three values of the magnetic field.
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FIG. 3. (Color online) Mode contributions to the ionic polar-
ization of LiNiPO4 for µ0Ha = 20 T. Inset: linear evolution of
each of the 13 B1u (polar) lattice modes with field strength.

We now turn to the magnetoelectric response of
LiNiPO4. For the magnetic point group mm′m, the
magnetoelectric tensor admits only two non-zero com-
ponents: αxz and αzx. We focus on the larger com-
ponent αzx, which we access by computing the Berry-
phase polarization along c while applying a magnetic
field along the a axis. In Fig. 2a we report both
the clamped-ion and lattice-mediated magnetoelectric re-
sponse under this orientation of magnetic field. For
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each of the four different values of the intra-atomic J ,
we find αel

zx ∼ 1.0 ps.m−1. However, as might be ex-
pected from the J dependence of the spin canting an-
gle, the ionic contribution to α is strongly sensitive to J .
For J = 0.0 eV, αlatt

zx is moderately large and negative,
and αtot

zx (J = 0) = −0.7 ps.m−1. This can be compared
with earlier calculations based on a model Hamiltonian
approach[24] (αzx = −0.74ps.m−1), and with experi-
mental measurements[24] (αzx = 1.5ps.m−1). With in-
creasing J , our calculations show that αlatt

zx progressively
increases, eventually turning positive with the total re-
sponse sweeping through the experimental value. The
connection between the J dependence of αlatt and the
canting angle is further highlighted in Fig. 2b, where the
ionic contribution to the polarization at different values
of the magnetic field strength are plotted against differ-
ent initial canting angles (obtained by varying J). We
observe a linear relationship between the magnetic-field
induced ionic polarization and the zero-field canting an-
gle. Interestingly, for a critical canting angle (θc ∼ 3.2◦),
the ionic contribution to the polarization is zero for all
field strengths. Under these conditions, αtot

zx is dominated
by the electronic contribution, while for other values of
the canting angle the electronic and ionic components are
comparable in magnitude.

To characterize the microscopic origin of αlatt
zx in

LiNiPO4, we report in Fig. 3 the phonon mode decompo-
sition of the magnetic-field induced lattice polarization
for different values of J . For LiNiPO4, thirteen polar
(B1u symmetry) modes enter in determining αlatt. As
expected, each mode increases in strength linearly with
the field (inset of Fig. 3), demonstrating that the lattice
remains harmonic. Plotting the contribution to the po-
larization for each mode for an applied magnetic field of
20T (Fig. 3), we find that all modes are important, so
that the response is surprisingly not dominated by the
softest lattice modes. The zero αlatt at θc clearly arises
from an accidental cancellation between the positive and
negative magnetoelectric responses of the 13 individual
polar lattice modes.

Conclusion: We have demonstrated a new approach
for calculating the linear magnetoelectric response of ma-
terials from first principles. The approach, which pro-
vides an efficient way to extract α even for systems with
low symmetry, involves self-consistent application of a
magnetic field which acts on the spin degrees of freedom
only in the Zeeman sense. Orbital magnetic contribu-
tions to responses are neglected within this approach, but
both electronic and ionic contributions to magnetic-field
induced electric polarization are present.

We have demonstrated that the electronic contribu-
tion to magnetoelectric responses is not negligible, and
can in fact dominate the total response, in contrast
with prior expectations. For technological applications
at high-frequency, purely electronic responses could mit-
igate material fatigue associated with lattice-based re-

sponses. Furthermore, we have shown for the case of
LiNiPO4 that the magnetoelectric response is not dom-
inated by the softest polar lattice modes, and that a
partial cancellation of the contributions from different
modes occurs, weakening the magnetoelectric response
of this material. These features suggest that the best
route to engineering strong magnetoelectrics may not lie
with strain engineering to induce lattice destabilization,
but rather with strengthening the spin-lattice coupling,
for example using strong non-relativistic mechanisms[6].
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