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Spin-orbit coupling, spin relaxation, and spin diffusion in organic solids
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We develop a systematic approach of quantifying spin-orbit coupling (SOC) and a rigorous theory
of carrier spin relaxation (SR) caused by the SOC in disordered organic solids. The SOC mixes up-
and down-spin in the polaron states and can be characterized by an admixture parameter γ2.
This mixing effects spin flips as polarons hop from one molecule to another. The SR time is τsf =
R̄2/(16γ2D) and the spin diffusion (SD) length is Ls = R̄/4|γ|, where R̄ is the mean polaron hopping
distance and D the carrier diffusion constant. The SOC in tris-(8-hydroxyquinoline) aluminum
(Alq3) is particularly strong due to the orthogonal arrangement of the three ligands. The theory
quantitatively explains the temperature-dependent SD in Alq3 from recent muon measurements.

PACS numbers: 71.70.Ej,72.80.Le,72.25.Rb, 76.30.Pk,72.25.Dc, 72.20.Ee

Spintronics is a rapidly growing field because of its
broad applications and fascinating science [1]. Organic
spintronics is motivated by weak SOCs and hyperfine in-
teractions (HFIs), the two major sources of SR, of light
constituent elements in organic materials [2]. To date,
however, there is little quantification of these interactions
in individual organic materials, which prevents a mean-
ingful comparison among different organics. In addition,
carrier SR in organics, especially that due to the SOC, is
poorly understood [3]. The organic solids used in spin-
tronic device structures are usually in the form of dense
thin films, which are neither crystalline nor molecules in
a solution. Hence, SR theories developed for crystalline
inorganic semiconductors, such as the classic works by
Elliott and Yafet [4] and by D’yakonov and Perel’ [5],
are not directly applicable. Nor are the SR theories for
isolated organic molecules [6, 7], where spins are immo-
bile. Fundamentally, SR of mobile electrons (carriers)
should be closely related to carrier transport (e.g., mobil-
ity) [4, 5], which is via hopping and frequently, variable-
range hopping [8, 9] in organic solids [10, 11]. In this
paper, we define a SOC measure and calculate its val-
ues in various organics. Then we develop a theory of SR
caused by the SOC.

In conjugated organic materials, the electronic states
are primarily derived from the p orbitals of carbon in
an sp2-pz hybrid configuration, in which the sp2 or-
bitals form σ bonds and determine the molecular struc-
ture, whereas the pz orbitals form π bonds, which are
mainly responsible for low-energy electrical and optical
processes. In fact, the celebrated Su-Schrieffer-Heeger
(SSH) model [12] contains only π electrons explicitly.
However, π-electron models are inherently inadequate
to study SOC (and HFI [16]), because by definition,
the SOC enables transfer of angular momenta between
orbitals and spins. By neglecting the σ (px and py)
electrons, the orbital angular momentum is completely
quenched and so is the SOC [13–15]. To see the SOC
effect, as a heuristic example, we consider the case of a
molecule in a 2p state subjected to a potential field that
lowers the energy of the pz orbital relative to px and py

by ∆ (to mimic σ-π energy splitting). The SOC of 2p
states is λl · s. If the spin quantization axis is along the
z-axis, from perturbation, the lowest-energy eigenstate
of the systems with spin primarily being up (down), is

| + (−)〉 = |pz ↑ (↓)〉 + (−)
λ

2∆
|[px + (−)ipy] ↓ (↑)〉. (1)

These two eigenstates, degenerate in energy (the energy

corrections due to the SOC are both − λ2

2∆), have both up-
and down-spin components, rendering spin not a good
quantum number. Equation (1) suggests that we can use
the percentage of down-spin in a predominantly up-spin
eigenstate to measure the SOC strength, γ2 = λ2/2∆2.
This measure, which survives any SU(2) rotation in the
spin space, depends on not only the SOC (λ), but also
the σ-π splitting (∆), indicating the necessity of explicit
inclusion of σ electrons in describing the SOC.

In an organic solid, the molecular (orbital) orientations
are randomly distributed, whereas the spin quantization
axis is well defined, along either an applied magnetic field
or magnetic contacts, which is fixed along z-axis in this
paper. For the molecule oriented along (θ,−φ) in the
spherical coordinates, the lowest eigenstate for “up” spin,
after taking into account the SOC, is [17]

|+′〉 = |p′z ↑〉− iλ

2∆

[

sin θ|p′y ↑〉−eiφ cos θ|p′y ↓〉+ieiφ|p′x ↓〉
]

,

(2)
where p′q (q = x, y, z) is the orbital in the local coordi-
nates. Again the SOC causes a spin mixing of γ2

↑↓ =
λ2

4∆2 (1 + cos2 θ). In addition, it gives rise to an orbital

mixing, γ2
↑↑ = λ2

4∆2 sin θ2. Since an intrinsic property like
SOC should not depend on the molecular orientation, a
suitable SOC measure is the combination of the orbital
mixing and spin mixing, γ2 = γ2

↑↑ + γ2
↑↓ = λ2

2∆2 , which is
also the maximum of spin-mixing.

For realistic organics, we focus on the highest occu-
pied molecular orbitals (HOMOs) of a negatively charged
and positively charged molecule or oligomer, which cor-
responds to the electron and hole polarons. The total
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Hamiltonian of an organic molecule can be written as

H = H0 +HSO = H0 +
∑

i

ξili · si, (3)

whereHSO is the summation of all atomic SOC contribu-
tions. The SOC is nonzero for p orbitals and the coupling
strengths are ξ = 28, 76, and 151 cm−1 for 2p orbitals
in C, N, and O, and 382 and 112 cm−1 for 3p orbitals
in S and Al [18]. Because of these weak SOCs compared
to bonding energies, in most first-principles calculations
of organic materials the SOC is completely ignored, i.e.,
the obtained eigenstates |ψk〉 are those of H = H0, which
are our starting point and can be expanded in terms of
the atomic orbitals,

|ψk〉 =
∑

iα

c
(k)
iα |φ(α)

i 〉,

where k is the index of eigenstates. |φ(α)
i 〉 is the

αth atomic orbital at the ith molecule, and φ(α) =
2s, 2px, 2py, 2pz for O, N, C, φ(α) = 1s for H, and
φ(α) = 3s, 3px, 3py, 3pz for S and Al. Since the atomic
orbitals are not orthogonal, the normalization condi-

tion is
∑

iα

∑

jα′ c
(k)
iα c

(k)
jα′S

(αα′)
ij = δkk′ where S

(αα′)
ij =

〈φ(α)
i |φ(α′)

j 〉. For the HOMO |ψ0〉, the eigenstate of “up”
spin after taking into account HSO is

|ψ0,+〉 = |ψ0, ↑〉 −
1

2

∑

k 6=0

〈ψk

∑

i ξiliz|ψ0〉
Ek − E0

|ψk ↑〉

− 1

2

∑

k 6=0

〈ψk

∑

i ξi(lix + iliy)|ψ0〉
Ek − E0

|ψk ↓〉,

where k runs over all possible eigenstates of H0 and liq
is the q component angular momentum at atom i. Using
liqpr = iǫqrsps for p orbitals at atom i with ǫqrs being
the unit axial tensor, we express |ψ0,+〉 as

|ψ0,+〉 = |ψ0, ↑〉 +
∑

iα

(aiα|φ(α)
i ↑〉 + biα|φ(α)

i ↓〉. (4)

The admixture parameter that measures SOC is

γ2 = γ2
↑↑ + γ2

↑↓ ≡
∑

ij

(a∗iαajα′ + b∗iαbjα′)S
(αα′)
ij . (5)

We calculate γ2 using |ψk〉 of the optimized molecular
geometry obtained from SIESTA [19] and list its values
for representative organic materials in Table I. Surpris-
ingly, the SOC in Alq3 is stronger by orders of magnitude
than in PPV and rubrene, and even much stronger than
T6, where S has a larger atomic SOC than N, O and Al
in Alq3. Having examined individual terms in Eq. (4),
we find that the strong SOC in Alq3 is due mainly to
the orthogonal arrangement of the three conjugated lig-
ands. To corroborate this conclusion we study the SOC

TABLE I: Spin-orbit coupling measure |γ|

Material electron polaron hole polaron
Alq3 2.75×10−2 6.91×10−3

sexithiophene (T6) 4.09×10−3 2.57×10−3

phenylenevinylene (PPV) 4.04×10−4 2.55×10−3

rubrene 2.97×10−4 3.25×10−4

benzene 2.75×10−4 3.06×10−4
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FIG. 1: (Color online) Admixture γ2 as a function of torsion
angle θ in biphenyl. Green (light gray) and red (dark gray)
lines are for the electron and hole polarons, respectively. Solid
(dashed) lines describe γ2 (γ2

↑↓). The inset shows the energy
splitting between the HOMO and HOMO+(−)1 for the elec-
tron (hole) polaron.

in a biphenyl molecule, which contains only C and H
atoms, as a function of the torsion angle θ between the
two rings. We see in Fig. 1 a strong dependence of γ2

on the torsion, especially near θ = π/2, where the π or-
bitals in the two rings are perpendicular to each other
and degenerate in energy, as shown in the inset of Fig.
2. Since in organic solids the molecules or oligomers may
be packed differently from sample to sample, the torsion
dependence shown in Fig. 1 suggests that the SOC in or-
ganics can be influenced by how the material is prepared.

Now we show that the SOC-induced spin-mixing in
polaron states can cause SR as polaron hops. Consider
two molecules with orientations (θi, φi) and (θj , φj). The
electron-phonon interaction, V , which facilitates polaron
hoping, does not depend on spin and cannot flip spin
by itself, 〈p′′q ↑ |V |p′r ↓〉 = 0, where p′q (p′′q ) represents
orbitals of molecule i (j) in local coordinates. However,
owing to the spin mixing, the matrix element from the
eigenstate for “up” spin |+′〉 in molecule i to that for
“down” spin |−′′〉 in molecule j is finite,

〈−′′|V |+′〉 =
λ

2∆

[

i cos θ1e
−iφ1Vz′′y′ − i cos θ2e

−iφ2Vy′′z′

+ e−iφ1Vz′′x′ − e−iφ2Vx′′z′

]

, (6)
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where Vq′′r′ = 〈p′′q ↑ |V |p′r ↑〉 is spin-independent and

Vq′′r′(θi, φi; θj , φj) =
∑

lm

O−1
ql (θj , φj)Vl′′m′(0)Omr(θi, φi),

where O(θ, φ) is the SO(3) rotation matrix and Vl′′m′(0)
represents the matrix element for (θi, φi) = (θj , φj) =
(0, 0). Without losing generality, we assume |Vx′′x′(0)| =
|Vy′′y′(0)| = |Vz′′z′(0)| = v0 between parallel orbitals
and |Vx′′y′(0)| = |Vy′′z′(0)| = |Vx′′z′(0)| = v1 between
perpendicular orbitals. After averaging over (θi, φi) and
(θj , φj), we have |〈−′′|V |+′〉|2 = ( λ

2∆ )2 8
9 (v2

0 + 2v2
1), and

for spin-conserving hopping, |〈+′′|V |+′〉|2 = 1
3 (v2

0 +2v2
1).

Thus each polaron hop contains both spin-conserving and
spin-flip contributions (their hopping rates are w++ and
w−+), and the percentage of the spin-flip hopping is

χ2 =
w−+

w++
=

|〈−′′|V |+′〉|2
|〈+′′|V |+′〉|2

=
4

3
γ2. (7)

We emphasize that |〈−′′|V |+′〉|2 and therefore w−+ are
invariant under any SU(2) rotation. The spin-conserving
hopping rate is directly related to the carrier diffusion
constant, D = 1

6w
++R̄2 [24]. The SR rate, which can be

measured by pulsed electrically detected magnetic reso-
nance [20], is [6]

τ−1
sf = w−+ + w+− = 2w−+ = 16γ2D/R̄2. (8)

Equation (8) indicates that the SOC-induced SR in-
creases with the carrier diffusion constant, and the SR
time becomes longer at lower temperatures, where the
polaron hopping is less frequent. The spin diffusion (SD)
length, which can be directly measured by muon spin
resonance [21] and two-photo photoemission [22], is

Ls ≡
√

Dτsf =
R̄

4γ
. (9)

This remarkably simple expression shows that SD length
is essentially controlled by the admixture parameter and
by improving the mobility the SD length will not be en-
hanced. Based on the SOC values in Table I and Eqs. (8)
and (9), τsf and Ls can vary significantly from one or-
ganic solid to another, ranging 10−6−10−2 s and 10−1000
nm, respectively.

The SR and SD can be more rigorously discussed by
using the density-matrix theory. The polaron hopping
can be written as V̂ =

∑

ij V̂ij , where the matrix el-
ements between polaron eigenstates in molecules i and
j is V̂ji = V 0

ji1̂ +
∑

q σ̂qV
q
ji, where σ̂q are the Pauli

matrices. V 0
ji = (〈+′′|V |+′〉 + 〈−′′|V |−′〉)/2 = Vp′′

z p′

z
,

V x
ji = (〈−′′|V |+′〉 + 〈+′′|V |−′〉)/2, V y

ji = (〈−′′|V |+′〉 −
〈+′′|V |−′〉)/2i, and V z

ji = (〈+′′|V |+′〉 − 〈−′′|V |−′〉)/2.
Spin-polarized carrier density is ρ̂ =

∑

i ρ̂i with ρ̂i =

ρ0
i 1̂ +

∑

q σ̂qρ
q
i , where ρ0

i is the equilibrium up- or down-
spin carrier density in the absence of spin polarization.

The density matrix obeys the following Redfield equation
in the interaction representation [6],

dρ̂

dt
= − i

~
[V̂ (t), ρ̂(0)] − 1

~2

∫ ∞

0

dτ [V̂ (t), [V̂ (t− τ), ρ̂(0)]],

which, after projecting ρ̂ into site i and spin component
q, becomes

dρq
i

dt
= − 1

~2

∑

j

[ρq
iL

0
ij(ωij)(1 + χ2

q +
∑

r 6=q

χ2
q)

− ρq
jL

0
ji(ωji)(1 + χ2

q −
∑

r 6=q

χ2
q)], (10)

where L0
ij is the temporal correlation function

L0
ij(ω) =

∫ +∞

−∞

V 0
ij(t)V

0
ji(t+ τ)e−iωτdτ.

and ωij = (Ei − Ej)/~ with Ei being the po-
laron energy at molecule i. Here we have used
∫ +∞

−∞
V q

ij(t)V
q′

ji (t+ τ)e−iωτ = δqq′L0
ij(ω)χ2

q. It is read-

ily to prove χ2
x = χ2

y = χ2
z = χ2/2 for random molec-

ular orientations. To describe carrier spins in disor-
dered organic solids, it is advantageous to use a spin-
polarized electrochemical potential, µ̂i = µ0

i Î+
∑

q σ̂qµ
q
i ,

which is related to the local density polarization as
ρq

i = ρ0
iµ

q
i /kBT in the nondegenerate systems with kB

being the Boltzmann constant and T temperature [23].
Noticing 1

~2L
0
ij(ωij)(1 + χ2

q) ≃ 1
~2L

0
ij(ωij) = wij ≡ w++

ij

[6, 7] and ρ0
iwij = ρ0

jwji, we rewrite Eq. (10) as

ρ0
i

kBT

dµq
i

dt
=

∑

j

Z−1
ij [(1 − χ2)µq

j − (1 + χ2)µq
i ], (11)

where Z−1
ij = ρ0

iwij/kBT = ρ0
jwji/kBT .

To determine the carrier SR time, we track time evo-
lution of a spatially homogeneous spin polarization, µq,
and in this case, Eq. (11) reads

dµq/dt = −2χ2µqkBT
∑

ij

Z−1
ij /

∑

i

ρ0
i ≡ −µq/τsf . (12)

Thus τ−1
sf = (8γ2/3)kBT

∑

ij Z
−1
ij /

∑

i ρ
0
i , which is iden-

tical to Eq. (8) if we employ the Kubo formula
for the diffusion constant in disordered systems, D =
∑

i ρ
0
iwijR

2
ij/6

∑

i ρ
0
i , where Rij = |Rij | and Rij is the

displacement between molecules i and j, and define R̄
as R̄2 =

∑

ij Z
−1
ij R

2
ij/

∑

ij Z
−1
ij (the meaning of R̄ used

before is clarified). To determine the SD length, we
examine the spatial dependence of spin polarization in
a steady state (dµq

i /dt = 0). By expanding µq(rj) =
µq(ri) + Rji · ∇µq(ri) + 1

2RjiRji : ∇∇µq(ri), and sum-
ming over i, Eq. (11) is reduced to

∑

ij

Z−1
ij [−2χ2µq(rj) +

1

6
R2

ij∇2µq(rj)] = 0. (13)
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Comparing it to the definition of SD length Ls, (∇2 −
L−2

s )µq(r) = 0, we find Ls = R̄/4γ, as in Eq. (9).
To reveal microscopic details of SD and to directly

model the muon experiments in Alq3, we solve Eq. (11)
in a 32×32 × 32 cubic lattice with one plane (x = 0)
assigned a constant µq = 1 and the opposite plane
(x = 31a) µq = 0. The lattice constant a is set 13 Å,
slightly larger than the diameter of an Alq3 molecule,
11.4 Å. In the lattice polarons can hop between any two
sites, and therefore the variable-range hopping [8, 9] is
automatically included in the model. The hopping prob-
ability is assumed to have the Efros-Shklovskii form [9],

wij = w0e
−2Rij/ℓe(Ei−Ej−e2/εRij)/kBT , where ℓ is the po-

laron delocalization length and e2/εRij is the Coulomb
interaction between the created electron-hole pair after
a polaron hop with ε being the dielectric constant. We
plot µ(x), the averaged µq

i over the y-z plane for a given
x, in Fig. 2(a), which is seen to decay exponentially over
distance, µ(x) ∼ e−x/Ls. The parameters are ℓ = 0.6
Å−1, |γ| = 0.1375, and e2/εa = 0.3 eV, ≫ |Ei − Ej |.
Here we artificially increase |γ| by 5 times to ensure a
converging SD length within the cubic lattice. We mul-
tiply the obtained SD lengths from Fig. 2(a) by 5 and
plot them in Fig. 2(b). The agreement between exper-
iment and theory is excellent. The SD length saturates
at high temperatures and increases as temperature low-
ers. From the distribution of polaron hopping distances,
d(R2) ≡ ∑

ij Z
−1
ij (R2

ij = R2)/
∑

ij Z
−1
ij , shown in Fig.

2(c)-(f), we see that the increase in Ls at low tempera-
tures is due to the enhanced polaron hopping distance R̄
and that the saturation occurs because polaron hoppings
are confined to nearest neighbors (R̄ = a) above 80 K.

The HFI can also cause carrier SR with a rate of
τ−1
H ∝ H2

I τd [25, 26], where H2
I is the HFI field vari-

ance and τd is the polaron dwell time at one molecule,
τd ∝ 1/D. Thus both the SR time τH and SD length√
DτH would be linear with D and rapidly increase with

temperature. The disparate temperature dependences
between SOC- and HFI-induced SR allow an experimen-
tal determination of carrier SR mechanisms in individual
organic solids. The agreement displayed in Fig. 2 sug-
gests that carrier SR in Alq3 is due mainly to the SOC.
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