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The properties of a local spin S = 1/2 coupled to K independent wires is studied in the presence
of bias voltages which drive the system out of thermal equilibrium. For K ≫ 1, a perturbative
renormalization group approach is employed to construct the voltage dependent scaling function for
the conductance and the T-matrix. In contrast to the single-channel case, the Kondo resonance is
split even by bias voltages small compared to the Kondo temperature TK , V ≪ TK . Besides the
applied voltage V , the current induced decoherence rate Γ ≪ V controls the physical properties of
the system. While the presence of V changes the structure of the renormalization group considerably,
decoherence turns out to be be very effective in prohibiting the flow towards new nonequilibrium
fixed points even in variants of the Kondo model where currents are partially suppressed.
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The problem of a local spin S exchange coupled to
K independent conduction electron reservoirs, inspite of
its apparent simplicity shows a rich variety of phases.
For example when K=2S, the local spin is completely
screened and the system behaves as a Fermi-liquid [1]. In
contrast for K > 2S, the spin is over-screened, and the
system exhibits non-Fermi liquid behavior characterized
by a zero temperature entropy S = ln g where g is a non-
integer [2–5]. Recently the over-screened Kondo problem
for K=2, S=1/2 was realized in a controlled experimental
set-up [6], opening up the possibility of probing these
exotic systems in the far out of equilibrium regime.

An important question in the study of any strongly
correlated system is the possibility of realizing new fixed
points and scaling behavior by driving the system out
of equilibrium. In [7] it was proposed that the single
channel Kondo model in the large bias limit should flow
to a new fixed point which is characterized by a change
in the number of independent screening channels as co-
herent scattering processes between leads are prohibited
by the bias voltage. However subsequent studies [8–12]
of the nonequilibrium single-channel Kondo model ruled
out such a nonequilibrium regime due to current induced
decoherence which qualitatively plays the role of an effec-
tive temperature (or an infra-red cutoff), and can be as
large as the voltage in the single-channel Kondo model.

In this paper we study the over-screened Kondo prob-
lem when a local spin S=1/2 is coupled to K independent
current carrying channels. In the limit K ≫ 1, the in-
termediate coupling non-Fermi liquid fixed point can be
studied within renormalized Keldysh perturbation theory
in 1/K. We show that the current induced decoherence in
this model is O(1/K) and thus considerably suppressed.
In spite of this we find that decoherence is highly effec-
tive in cutting off the flow to any nonequilibrium fixed
points. We present results for the voltage dependence of
the conductance and the T-matrix, the latter being re-
lated to the local density of states that can be probed in
a tunneling experiment.

The Hamiltonian is H = H0 + VX where

H0 =
∑

kσα=L,R

m=1...K

(ǫk − µm
α )c†kσmαckσmα (1)

represents K independent free electron reservoirs labeled
by m. Each of the K reservoirs is split into a left (L)
and a right (R) part which can be maintained at dif-
ferent chemical potentials µm

L 6= µm
R . The local spin is

coupled to the spin density of each wire via the exchange
interaction,

VX =
1

2
~S ·

∑

α,β=L,R;k,k′

σσ′ ;m=1...K

Jαβc†kσmα~σσσ′ck′σ′mβ (2)

Here, JLR connects the L and R leads so that a net cur-
rent can flow within each reservoir when µm

L 6= µm
R . How-

ever there is no flow of current from channel m to channel
m′ 6= m.

We evaluate two physical quantities, the current
through the m-th lead Îm=edNLm

dt which is given by

Îm=−i e
~
JLR

~S
2 ·∑kk′σσ′

(

c†kσLm~σσσ′ck′σ′Rm − h.c.
)

, and

the T -matrix of the electrons in the m-th lead defined
by Gmkk′αα′

R =δkk′δαα′G0mk
R + G0mkα

R T mαα′

R G0mk′α′

R ,

where Gmkk′αα′

R is the retarded propagator for
the electrons in the m-th lead and the T-matrix
is the expectation value of the composite op-
erator T mαα′

ab (t, t′)=−iTC〈Oa(t)O†
b(t

′)〉 where

Oa(t)= 1
2

∑

α1k1σ1
Jαα1

~S(t) · ~σσσ1
cmα1k1σ1a(t), a, b=±

denote Keldysh labeling and TC denotes Keldysh
time-ordering [13]. Formally, under assumptions that
the interactions VX was switched on at t=−∞, the
expectation value of any operator Ô at time t=0 is [13]

〈Ô(0)〉=Tr
[(

T̃ ei
R

0

−∞
dt′VX (t′)

)

Ô
(

Te−i
R

0

−∞
dtVX (t)

)

ρ
]

where ρ is the initial density matrix at t=−∞ and
VX(t)=eiH0tVXe−iH0t. We assume ρ=ρleads ⊗ ρS where
ρS is the density matrix for the free spin, and ρleads is
such that 〈c†kσmαckσmαρleads〉=f(ǫk − µm

α ), f being the
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Fermi function. We also assume that the leads have a
uniform density of states ν and a bandwidth 2D.

Identical voltage drops across the K-wires: Let
us suppose that all the K wires have the same voltage
drop V =| µL − µR | applied across them. Then a per-
turbative treatment to two-loop order, where only the
diagrams which are O(K) at two loop are kept gives the
following result for the conductance Gm = ∂Im/∂V ,

Gm =
3π

4

e2

~
(νJLR)

2

[

1 + 2ν (JLL + JRR) ln
D

V

−K ln
D

V

∑

αβ=L,R

θ(D− | µα − µβ |)(νJαβ)2



 (3)

In addition the imaginary part of the T -matrix of the
m-th wire is found to be,

−πνIm
[

T mαα′σ
R (Ω)

]

=
3π2

16
ν2
∑

α1

[Jαα1
Jα1α′

+2ν
∑

α2

Jαα1
Jα1α2

Jα2α′ ln

(

D

| Ω − µα1
|

)

−KJαα1
Jα1α′ ln

(

D

| Ω − µα1
|

)

×
∑

γδ

ν2J2
γδθ(D− | µγ − µδ |)



 (4)

According to Eq. (3) all logarithmic singularities in
the conductance are cutoff by the voltage. This reflects
the fact that in a model where the cutoff D is much
smaller than the voltage difference V no current will flow
by energy conservation. In contrast, the calculation of
the T -matrix shows that even in this regime resonant
spin-flip processes lead to logarithmic renormalizations.
For the renormalization group (RG) analysis it will be
important, that some JLR processes do not contribute for
D < V as described by the θ function terms in Eq. (4).

We will formulate the RG equations in terms of dimen-
sionless couplings, gab=νJab assuming symmetric cou-
plings, gLL=gRR=gd but we will allow for gLR 6= gd.
While for a simple Anderson model one always obtains
gLR=gd, this is not valid for more complex models.

When deriving two-loop equations in full generality for
a non-equilibrium situation using, e.g., functional renor-
malization group [14], flow equations [10] or real-time
renormalization group approaches [12], it is necessary to
take into account the full energy dependence of interac-
tion vertices. Even at the one-loop level it is useful [15]
to keep track of how the coupling constants g depend on
the energy of the incoming electron. To leading order in
1/K, however, and for the quantities considered in this
paper, we believe that it is sufficient to use a simpler
version guided by results from perturbation theory, con-
centrating on a few on-shell coupling constants. Already

in perturbation theory to order J3 the structure of loga-
rithmic corrections depends on which physical quantity is
considered. The simplest case is the conductance where
all logarithmic corrections up to the order considered are
cutoff by the voltage. Thus for the conductance it is suffi-
cient to use the well-known equilibrium RG equations [1]

dgd

d lnD
= −

[

(

g2
d + g2

LR

)

− K

2
gd

(

2g2
d + 2g2

LR

)

]

dgLR

d lnD
= −

[

2gdgLR − K

2
gLR

(

2g2
d + 2g2

LR

)

]

(5)

supplemented by the condition that the RG flow is cutoff
at D=V .

However, when one requires instead that the T -matrix
T αα(µα), evaluated at the Fermi energy of the lead, re-
mains invariant under RG, one obtains the RG equations

dgd

d lnD
= −

[

(

g2
d + g2

LRΘV

)

− K

2
gd

(

2g2
d + 2g2

LRΘV

)

]

dgLR

d lnD
= −

[

gdgLR(1 + ΘV ) − K

2
gLR

(

2g2
d + 2g2

LRΘV

)

]

(6)

Here the factors ΘV = Θ(D − V ) take into account that
part of the logarithms and therefore the RG-flow is cutoff
by the voltage when the cutoff becomes smaller than the
voltage. Therefore the equilibrium RG flow is modified
at the scale V in a way which can be simply understood
as a suppression of all resonant scattering processes from
one to the other chemical potential by gLR.

Note that Eq. (6) is not valid in the limit D → 0 be-
cause the RG flow is ultimately cutoff by the decoherence
processes as had been pointed out previously [8–11]. A
careful analysis of the decoherence rates (including 3 loop
diagrams) has been performed by Schoeller and Reining-
haus in [12] by investigating the time evolution of the
density matrix of the impurity. Their analysis shows that
within the precision of a two-loop calculation (i.e. within
our model to leading order in 1/K), the decoherence rate
is given by the simple formula used previously [8, 9] for
one-loop calculations. Up to prefactors of order 1, irrele-
vant for our discussion, the RG flow is ultimately cutoff
at the scale Γ,

Γ = πKgLR(V )2V (7)

where gLR(V ) is the running coupling constant at the
scale D=V . The factor K arises as each of the K chan-
nels contributes to the dephasing. Γ is the Korringa spin-
relaxation rate [8–11] and is proportional to the current.

Let us make the assumption gd=gLR (we will relax this
condition later). For the regime D > V it is convenient
to define g=2gd which obeys the RG equation

dg

d lnD
= −

[

g2 − K

2
g3

]

= β(g) (8)
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FIG. 1: (Color online) Main panel: The conductance
in the scaling limit and for several different ∆=2/K.
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∆2. Inset: Im[T (Ω)] for V/TK=0.1 and the

same ∆ as in the main panel. T∆=3π2∆2/32.

The above equation has the well known fixed point at
g∗=2/K [2], whereas the scaling dimension of the leading
irrelevant operator is ∆=β′(g∗)= 2

K valid for K ≫ 1 (the
exact result [4] is ∆ = 2/(K + 2)). Integrating Eq. (8)
upto an energy-scale D, and defining the Kondo temper-

ature as TK=D0

(

g0

g∗

)K/2

e−1/g0 , (D0, g0 being the ini-

tial bandwidth and coupling constant respectively), one
gets [5]

|g(D) − g∗|

= |g0 − g∗|
[

g(D)

g∗

]K∆/2(
D

TK

)∆

e−∆/g(D) (9)

Eq. (9) is valid for arbitrary D/TK . For D ≫
TK , i.e. for g ≪ g∗, we obtain g(D) ≃ 1

ln D/TK
+

K
2

ln(2/K ln D/TK)
(ln D/TK)2 + O( 1

lnD/TK
)3. For D ≪ TK , setting

g(D)=g∗ on the r.h.s of Eq. (9) one gets

g(D) = g∗

(

1 − ξ

(

D

TK

)∆
)

(10)

where ξ = (1 − g0/g∗) e−∆/g∗

. In the scaling limit g0 →
0, and for large K, ξ takes the universal value ξ = 1/e.

Integrating upto the energy scale D=V , the loga-
rithms in the conductance are resummed giving Gm ≈
3π
4

e2

~
g2

LR(V ). In particular the result for V ≪ TK is

Gm ≈ 3π

4

e2

~

g∗2

4

[

1 − 2ξ

(

V

TK

)∆
]

(11)

where we have dropped higher order terms ∼
(

V
TK

)2∆

.

Note that the conductance near the fixed point is a
quantity of O(1/K2). For arbitrary V/TK and in the
scaling limit, the conductance is given by the univer-

sal function G/G∆ = 1/
[

1 + W
(

e−1(V/TK)∆
)]2

where

G∆=
(

2e2

h

)

3π2

16 ∆2 and W (x) is the Lambert W function.

The conductance for several different ∆ is plotted in
Fig. 1. At the fixed point g∗LR=1/K. Thus the deco-
herence rate (defined in Eq. (7)) for V ≪ TK is,

Γ =
πV

K
(12)

and thus apparently small for K ≫ 1. However, as we
show below, this decoherence rate plays an important
role in cutting off the logarithms in the T -matrix.

For V =T=0 the T matrix has a powerlaw cusp,
ImT(ω) ≈ c1 − c2|ω|∆ [4, 5]. Eqn. (4) suggests that this
peak will split by V and we also expect it to be broadened
by Γ. As Γ ≪ V this splitting will be observable even
for V ≪ TK . In the following we will use RG to calcu-
late this split Kondo resonance for V ≪ TK (results for
V ≫ TK follow from the literature of the single-channel
Kondo model [15]). We assume the symmetrical applica-
tion of voltages µL=−µR=V/2 > 0. For |Ω− V/2| ≪ V ,
and for V ≫ D > |Ω − V/2|, Γ, Eq. (6) gives,

gd(D) ≈ 1

2

[

g∗ − (g∗ − g(V ))

(

D

V

)∆/2
]

(13)

≈ g∗

2

[

1 − ξ

(

V

TK

)∆(
D

V

)∆/2
]

(14)

The resummed T-matrix is then given by,

−πν Im
[

T αα′σ
R (Ω)

]

≈ 3π2

16

[

2g2
d(max(Ω − V/2, Γ))

]

(15)

Expanding Eq. 15 in powers of the interaction g, we have
checked that this is consistent with Eqn. (4).

For V < Ω < TK the T -matrix is described by a cusp
with power ∆. Apparently, for Γ < |Ω − V/2| ≪ V this
exponent changes to ∆/2 and one may want to interpret
this as a new nonequilibrium scaling regime governed by a
2K channel, instead of K channel behavior. However, de-
coherence is so strong that this regime is ‘unmeasurable’:
the extra factor in Eq. (14) 1 > (D/V )∆/2 & (Γ/V )∆/2 ≈
e−(lnK)/K always remains close to 1. Moreover, the peak
at Ω=V/2 is not much higher than the minimum at Ω=0,

Im[T (V/2) − T (0)]/Im[T (0)] ∼
(

V
TK

)∆
lnK
K ≪ 1. These

results are shown schematically in Fig. 1 where we have
used max(a, b)=

√
a2 + b2.

Above, we have shown that a 2K channel fixed point
cannot be stabilized by a finite voltage in an extended
regime. However, if one considers a model where initially
gLR ≪ gd such a regime becomes accessible. Remarkably,
one can even calculate the nonequilibrium conductance
exactly in this regime for K=1 [16]. It has also been
suggested by one of us [9] that a finite voltage stabilizes
the 2K channel regime efficiently for K=1 for sufficiently
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small gLR. It is therefore interesting to study this case
also for K ≫ 1.

For gLR=0 the system is described by a 2K
channel fixed point with a Kondo temperature
TK=D0(Kgd0)

Ke−1/gd0 , and voltage has no effect as no
currents can flow. However gLR is a relevant variable
for V =0. While at the scale TK it is small, gLR(TK) ≈
gLR0

g2
d0

K2 , it grows below TK with scaling dimension −1/K

(compared to the exact result [4] −1/(K + 1)), thus in-
ducing a flow back to the K channel fixed point which is

reached at the scale T ∗
K ≈ TK

(

gLR0

Kg2
d0

)K

.

New physics can arise in the regime T ∗
K < V < TK

governed by the 2K-channel fixed point. For exam-
ple, the conductance in this regime is given by Gm ∼
e2

~
gLR(V )2 ∼ e2

~K2

(

T∗

K

V

)2/K

which crosses smoothly over

to Eqn. (11) for V ∼ T ∗
K . Similarly, the decoherence

rate in this regime is given by Γ ∼ KV gLR(V )2 ∼
V
K

(

T∗

K

V

)2/K

. To decide whether the range of valid-

ity of the 2K channel regime is enhanced compared to
the equilibrium case we compare Γ with T ∗

K and V for
TK > V > T ∗

K . We find

Γ

T ∗
K

∼ 1

K

(

V

T ∗
K

)1−2/K

,
Γ

V
∼ 1

K

(

V

T ∗
K

)−2/K

(16)

While the ratio Γ/V is reduced in this regime, the de-
coherence rate is always larger than T ∗

K for V/T ∗
K & K

and approaches Γ/V ≈ 1/K as before for smaller volt-
ages (up to small corrections of O(ln K/K)). This implies
that voltage bias does not enhance the regime where 2K
channel physics is observable in contrast to the sugges-
tion of Ref. [9].

Leads with different voltage differences: We now
discuss the case where (for gLR=gd) a fraction p and
hence Kp leads are at voltage V ≪ TK , while K(1 − p)
are at V = 0. (In [6] one has p = 1/2 and K = 2). The
question arises whether the decoherence Γ again prohibits
the flow to new fixed points for finite V . Analyzing as
above the logarithmic corrections to the T -matrix in the
regime D < V we obtain

dg0

d lnD
= −

[

g2
0 − K

2
g0{(1 − p)g2

0 + p(2g2
dV )}

]

dgdV

d lnD
= −

[

g2
dV − K

2
gdV {(1 − p)g2

0 + p(2g2
dV )}

]

(17)

where gdV and g0 = 2gd are the coupling constants for the
leads with and without an applied bias voltage respec-
tively. The initial values gdV (V )=g0(V )/2=g(V )/2 are
obtained from Eq. (9) or (10). For our initial condition
gdV < g0, the solution apparently flows towards the fixed
point g∗dV =0, g∗0=2/(K(1 − p)) where only the channels
without bias voltage contribute to screening, and pow-
erlaws are governed by the exponent ∆p=2/(K(1 − p)).

This is however misleading because the decoherence stops
the flow towards this fixed point for all p. To see this note
that close to the K channel fixed point gdV =g0/2=1/K
the RG equations are dg0

d ln D ≈ −2p/K2 and dgdV

d ln D ≈
(1 − p)/K2. Therefore all changes arising from the flow
from D = V to D = Γ ≃ πpV/K remain for arbitrary
p smaller than 2

K2 ln(V/Γ) < 2
K2 ln(K2) ≪ 1/K. There-

fore the new fixed points can never be approached.

In summary we have studied the nonequilibrium over-
screened Kondo problem in the perturbatively solvable
limit of a large number of leads K ≫ 1. For this
model, current induced decoherence is very small (Γ/V =
O(1/K) ≪ 1). However, in this limit the renormaliza-
tion group flows also become very slow. Our calculations
show that the net result is that the flow to any new volt-
age induced fixed points is stopped very effectively by
the decoherence. We have made predictions for the split-
ting of the T-matrix for V ≪ TK which can be observed
experimentally. An important open question is to study
this nonequilibrium problem in the presence of an exter-
nal magnetic field.
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B 70, 155301 (2004).



5

[16] E. Sela and I. Affleck, Phys. Rev. Lett. 102, 047201
(2009).


