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Abstract  

A new class of functional materials with giant non-hysteretic strain 

responses to applied fields is considered. They are decomposed two-

phase systems consisting of single-domain nano-precipitates of a low 

symmetry phase. Their strain response is caused by the field-induced 

change of structural orientation of the domain states of these precipitates. 

The super-response follows from the novel concept of structural 

anisotropy that is analogous to the magnetic anisotropy. Its vanishing 

produces a new glass-like structural state. The developed Phase Field 

theory and modeling allow us to formulate criteria for searching super-

responsive two-phase nanostructured alloys.  
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Two-phase nanostructured alloys, consisting of coherent nano-precipitates of the low-

symmetry phase from the cubic matrix, are well known for their excellent mechanical 

properties due to the precipitation hardening. However, they have never been considered 

as promising functional materials. In this paper, we introduce a new concept of structural 

anisotropy to consider the effects of field-induced crystal lattice rearrangement on their 

strain responses. It is demonstrated that these materials can have remarkable strain 

responses to applied fields. In particular, they can have a combination of giant low- or 

non-hysteretic field-induced strain responses, high blocking forces, and good mechanical 

properties. This suggests that some nano-dispersive two-phase alloys may be 

functionalized to have supreme properties. 

To describe the crystal lattice rearrangement mode, we introduce a strain tensor, o
ijε , 

called conditional eigenstrain. The conditional eigenstrain, o
ijε , is a relaxing six-

component long-range order parameter fully defined by three principal strains 

(eigenvalues) and three corresponding principal directions (eigenvectors). For a low-

symmetry phase, the n symmetry-related energy minimizing structural states are 

characterized by ( ),  ( 1,2.. )o oo
ij ij p p nε ε= = , where ( )oo

ij pε  are the stress-free Eshelby 

eigenstrains.[1,2] A transition between two states of ( )oo
ij pε can be accomplished by small 

atomic displacements, which for example results in the 90° rotation of principal 

directions of o
ijε  for the tetragonal phase, and does not require a 90° rotation of the entire 

lattice of the domain.(Fig. 1a) A newly introduced notion of structural anisotropy is 

characterized by the energy of structural anisotropy that is a function of the orientation of 
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principal directions of o
ijε , which can be derived from the non-linear specific free 

energy, ( )o
ijf ε  , by its partial minimization with respect to eigenvalues of o

ijε .  

The structural anisotropy is analogous to the magnetic anisotropy in ferromagnets, 

wherein the energy is directionally dependent on a vector (magnetization) rather than a 

tensor.[3] Like magnetic anisotropy that crucially influences main technological 

characteristics of ferromagnets,[3] the structural anisotropy distinguishes structurally 

hard and soft materials, affects similar characteristics of structural materials, such as the 

width, size and mobility of structural domains, and determines the hysteresis.  

To quantify the structural anisotropy, we approximate ( )o
ijf ε by a Landau 

polynomial:[4,5] 

 1 1

2 3
( ...o o o o o o

ij ijkl ij kl ijklsm ij kl smf C Dε ε ε ε ε ε) = + + , (1) 

where o
ijε =0 describes the stress-free cubic parent phase;  ijklC and ijklsmD  are tensor 

coefficients with the symmetry of the parent cubic phase, summation over repeated 

indices is implied. ijklC  are elastic constants. In general, these coefficients are functions 

of temperature and composition.  

The general behavior of ( )o
ijf ε can be illustrated in its subspace of uniaxial strain 

defined by *(f f ε= , )n , where n  is a direction of uniaxial o
ijε , and *ε is a typical value 

of the strain while ratios between principal values of o
ijε are fixed. Figure 1(b-d) shows 

the surfaces *(f f ε= , )n  for different structural anisotropies and n located in the (001) 

plane. Positions of the structurally equivalent global minima in Figs. 1(b-c) at n || <100> 

indicate that the stable phase is tetragonal. The value of the energy barriers between the 
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minima determines the easiness of a rotational transition between them distinguishing 

structurally hard and soft materials. Application of the external fields can eliminate the 

barriers greatly reducing the hysteresis. Vanishing of the structural anisotropy, Fig.1d, 

eliminates the barriers and corresponds to a limit case of structural isotropy. This special 

case occurs when (1) becomes an expansion in invariants of o
ijε , which are 2( )o

iiε , o o
ij ijε ε , 

o o o
ij jk kiε ε ε , o o o

ij ij kkε ε ε , and etc. with scalar expansion coefficients. Since o
ijε  in this case is 

“decoupled” from the crystallographic directions of the parent phase, an unusual structure 

consisting of structural nano-domains with all possible (spherically degenerated) 

orientations is resulted. This structure has infinite rotational flexibility, and can be 

perceived as structural glass that is analogous to the ferromagnetic glass.  

The structural anisotropy discussed above is only an intrinsic part of the total 

anisotropy describing the free energy of the lattice rearrangement of ideal crystals. There 

is another source of structural anisotropy associated with the coherency strain required to 

restore the lattice compatibility. Its energy depends on the volume of the nano-domains. 

However, unlike the chemical energy, it also depends on lattice orientation of 

precipitates, their shapes and positions. Therefore, the extrinsic anisotropy is a structure-

sensitive extrinsic property. In particular, it is described by the Khachaturyan-Shatalov 

theory.[2,6] The extrinsic anisotropy is analogous to the anisotropy produced by the 

magnetostatic energy described by the magnetic shape factor [7] that also depends on 

shapes and positions of magnetic particles.[2,8] In fact, this analogy is rooted in the 

mathematic similarity of both interactions.[2,7,9].  

In this paper, we study the formation of mixture of the cubic and tetragonal phases 

obtained by decomposition during “annealing” of the supersaturated cubic solid solution, 
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which was quenched into the two phase region. We consider microstructures at very early 

stages of the growth and coarsening when dimensions of precipitates of the tetragonal 

phase are still within the nano-scale range. The strain response of the obtained systems to 

the applied stress is investigated (applied magnetic fields could be similarly 

considered).The nano-size of the tetragonal particles guarantees the single-domain state, 

and thus reduces a hysteresis by eliminating energy dissipation associated with domain 

wall movements. The evolution of two fields, composition, ( ),c tr , and conditional 

eigenstrain, ( )0 ,ij tε r , are based on numerical solutions of the Phase Field Microelasticity 

kinetic equations [10]: 

( )
( ) ( )

0 ,
,

,
ij

o
ij

t FL t
t t ε

ε δ ξ
δε

∂
= − +

∂
r

r
r

, (2a) 

( )
( ) ( )2,

,
, c

c t FM t
t c t

δ ξ
δ

∂
= ∇ +

∂
r

r
r

, (2b) 

where t is time, F is the total non-equilibrium free energy, 0/ ijFδ δε and /F cδ δ are the 

driving forces, L and M are the kinetic coefficients, and ( ), tεξ r and ( ),c tξ r  are 

Langevin noise terms.  The total free energy functional is: 

( )

( )
3

3

3

3( ) ( ) *
(2 )

1 1, ( , )
2 2

1 ( )
2

o o

ij kl

o o
ij ijo o

ij ij c
m m m mV

app o
ijkl m ijmn np klpq q ij ij

V

d k

c cF c f c d r
r r r r

C n C C n d r

ε

ε ε
π

ε ε
ε ε β β

σ ε

⎛ ⎞∂ ∂ ∂ ∂= + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

+ − Ω −∫

∫

∫k kn

, (3) 

where ( )0 ,ijf cε is the anharmonic non-equilibrium energy density function, εβ and cβ  

are the gradient coefficients, app
ijσ  is the applied stress. The second term is the coherency 

strain energy caused by the crystal lattice misfit associated with ( )0
ijε r ,[2,6],  and the 



6 
 

third term is the energy of interaction with the applied stress. ( )k0~
ijε  is the Fourier 

transform of ( )0
ijε r , / k=n k is the unit vector, and ( ) 1( )mn mijn i jC n n −Ω =n .  In our 

modeling we write ( )0 ,ijf cε  as: 

 ( )

2 2 2
0 1 2 1 2

3 2 430 33 40 44

1( , ) ( ) ( ) (1+ c + c )
2

( ) ( ) ( )
3 3 4 4

o o o
ij ijkl ij kl

o o o o o o o
ij jk ki mm ij ij mm

f c A c c c c A A C

c c B B D D
c c

α

β α

ε ε ε

ε ε ε ε ε ε ε

= − − +

− ⎡ ⎤+ × + + +⎢ ⎥− ⎣ ⎦

r , (4) 

where the structural anisotropy enters only the quadratic terms in o
ijε , characterized by 

μ = 11 12 442C C C− − , and other coefficients are scalars.   

Equation (2) is solved in the reduced forms (denoted by superscript asterisk * ): stress 

and strain are measured in units of 3ε , ( *
3

o
ij ijε ε ε= , *

44 3
o
ij ij Cσ σ ε= , 3 ( ) /t c cc a aε = −  

and 1 ( ) /t c ca a aε = − where ct, at, and ac are lattice parameters of the teteragonal and 

cubic phases, respectively);  the energy in unit of the typical strain energy, 2
44 3f C εΔ = ; 

all lengths in units of the physical length, l ( * /r r l= ); the time t  in units of the typical 

diffusion time ,τ  ( * /t t τ= ).   

We use *
0 7500A = , *

1 -4.5787A = , *
2 5.5319A = , 1 0.25c = , 2 0.5c = , 0.235cα = , 

0.52cβ = , * 60cβ = , * 3.0εβ = , * 50.0L = , and * 1.0M = (for decomposition only), which 

estimates l ~1 nm and the size of particles ~10nm. Other reduced values are listed in the 

upper part of Fig.2, which provide about the same minimum energy density at *
33
oε ~1.00 

and * *
11 22
o oε ε= ~-0.300 for different *

44/ Cμ μ= . The behavior of the chosen Landau free 

energy is shown in the lower part of Fig. 2. The results presented below are obtained by 

the use of the periodical boundary conditions. 
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Fig.3a shows a typical 3D microstructure formed with constant uniaxial stress, 

* 0.03appσ = , applied along [001] during decomposition, where * 0.05μ = − . Figure 3b 

shows the strain responses generated by the rotation of tetragonality axis under periodical 

uniaxial stresses applied along various directions. In addition to the conventional 

Hookean strain ( 1
kl ijkl ijCε σ−= ), this rotational strain is calculated by the rotation of o

ijε , as 

31 ( )o
ij ijV r d rε εΔ = Δ∫ in the homogeneous modulus approximation.[1,2] Figure 3b thus 

shows that macroscopic strain responses are significantly magnified by the rotational 

flexibility of nano-particles, which is recoverable and can be non-hysteretic. In fact, since 

ijεΔ ~ oo
ijε ωΔ , ~oo oo

ij ijε εΔ and oo
ijε  can be up to ~ 10%, ijεΔ can thus be regarded a giant 

strain, where ω is the volume fraction of the rotated low symmetry phase. [2,11]  

Further 2D modeling of the nanostructure formation without applying stress during 

decomposition shows that decreasing structural anisotropy increases the stress-induced 

deviation of the principal directions of o
ijε from the <10> directions. In the limit isotropic 

case, * 0μ = , the structure is  glass-like: its nano-precipitates have  random orientation of 

the principal directions of o
ijε  (Fig. 4). The modeling also shows that if * 0.2μ ≥ −  and the 

stress is applied along the <10> directions, the rotational strain becomes non-recoverable. 

However, as in Fig. 5, the strain responses to stress applied along the <11> directions are 

practically non-hysteretic for all simulated cases: the higher the structural anisotropy, the 

bigger the blocking force and the narrower the hysteresis loop.   

Prototyping strain responses caused by rotational flexibility of the low-symmetry 

phase becomes possible only after we introduce the relaxing conditional eigenstrain, o
ijε . 

This is an additional degree of freedom to the conventional Eshelby theory of coherent 
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inclusions with fixed eigenstrain.[1,2] In fact, the Eshelby theory corresponds to a 

limiting case of infinitely “hard” materials.  

While the anharmonic function, ( )o
ijf ε , defines the intrinsic structural anisotropy, 

the extrinsic contribution to the structural anisotropy is provided by the coherency elastic 

strain, which stabilizes the initial configuration, modifies energy barriers for rotating o
ijε , 

and changes the blocking force. To minimize the hysteresis, we have to consider both 

intrinsic and extrinsic contributions to the energy barriers that are responsible for the 

hysteresis and recoverability. 

A generic way to this goal is to apply stress along the <111> direction (equivalent to 

<11> direction in 2D). In this case, instead of flipping between <100> domain 

orientations, the stress rotates o
ijε of all particles toward the common <111> direction, 

without overcoming any intrinsic energy barrier. Our computer modeling shows that the 

extrinsic energy barriers are also minimized in this case, which leads to practically 

monotonous increasing the total energy upon deviation of o
ijε . Removing the stress thus 

relaxes o
ijε to its initial configuration, macroscopically manifested as recoverable and non-

hysteretic or weakly-hysteretic strain responses. In fact, similar arguments are even 

applicable to any tetragonal single crystal and single phase system, including single 

phase martensitic systems with multidomain structure. 

For some microstructure engineered cases, there are alternative ways to minimize 

hysteresis. The [001] oriented domains are predominantly formed by decomposition 

under the [001] oriented stress (Fig. 3a). Hence, there is no flipping of tetragonality under 
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stress applied along [101] direction. Instead, it just rotates [001] domains toward [101]. 

This rotation is barrierless and thus has no hysteresis (Fig. 3b).  

There are experimental findings consistent with our theory and modeling. About 

seven-fold strain softening—a strain increase at the same stress— is observed in the Fe-

30%Pd alloy in a pre-martensitic two-phase state, which has been related to the formation 

of nano-dispersions of tetragonal particles in the cubic matrix (tweed structure).[12] The 

elastic softening associated with a displacive reorientation of randomly distributed nano-

domain particles was reported in doped shape memory NiTi alloys[13,14]. We may also 

speculate that the non-hysteretic stress-induced rotation of tetragonality directions of the 

observed nano-precipitates is the origin of the high elastic limit of the classical 

precipitation hardening Cu-Be alloy with the tweed structure.[15] A significant Shape 

Memory Effect (SME) was recently discovered in this alloy.[16] It is also possible that 

the giant pseudoelastic deformation (~2.3%), and high strength observed in the 

structurally heterogeneous Gum Metals based on  Ti-Nb alloys [17-20] are of the same 

nature. 

In summary, specially chosen two-phase nanostructured alloys may have giant non-

hysteretic strain responses to applied stress, excellent mechanical properties due to the 

precipitation hardening, and important martensitic features (SME and superelasticity). 

Such materials can also have giant magnetostriction if they are magnetic and the 

reorientation of single-domain states of nano-precipitates is induced by magnetic field. 

The proposed theory and modeling provide a guideline for developing a new class of 

functional materials with giant non-hysteretic strain response, large blocking force, and 

good mechanical properties.  
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Captions:  

Figure 1. (Color online)  (a) Schematic flipping of a tetragonal unit cell through small 

atomic displacements, and (b-d) the free energy dependence on the representative strain, 
*ε , and direction n  in the (001) plane. The transition, i.e., from 1 to 3, goes through 

intermediate states like 2 in (a), and a projection of the transition path is indicated by dots 

in (b-d). The red arrow in (b-d) shows the energy barrier along this path. A local 

minimum at the top of (b-d) (at * 0ε = ) describes the metastable parent phase.  

 

Figure 2. (Color online) Reduced parameters for different structural anisotropies (upper). 

Compositional dependence of the free energies of the cubic and tetragonal phases 

(lower).  

 

Figure 3. (Color online)  (a) Microstructure obtained by decomposition under constant 
stress, and (b) strain responses induced by the rotation of o

ijε  to periodically applied stress 

along different directions. The simulation size is 80 80 80× × , 0.29c = , * 0.05μ = − and 
* ~ 8.8t . The constant stress applied during decomposition, * 0.03appσ = , is applied along 

[001].  
 
Figure 4. (Color online)  (a) 2D microstructure of structurally isotropic system (μ=0) and 

(b) an inset of (a). Nano-particles are bordered by white lines. In (b) the principal 

directions of o
ijε  corresponding to its maximum principal value is shown by streaks. 
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Simulation size is 512 512× , 0.29c = , * ~ 24t , and no stress is applied during 

decomposition.  

 

Figure 5. (Color online) Strain responses induced by the rotation of o
ijε   to periodical 

stress applied along the [11] direction. The microstructures are obtained by 2D modeling 

of decomposition without applying stress.  2D simulation size is512 512× , 0.29c =  and 
* ~ 24t .  

 

 












