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Crystalline materials deform in an intermittent way via dislocation-slip avalanches. Below a criti-
cal stress, the dislocations are jammed within their glide plane due to long-range elastic interactions
and the material exhibits plastic response, while above this critical stress the dislocations are mobile
(the unjammed phase) and the material flows. We use dislocation dynamics and scaling arguments
in two dimensions to show that the critical stress grows with the square root of the dislocation
density. Consequently, dislocations jam at any density, in contrast to granular materials, which only
jam below a critical density.
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When a crystalline material is sufficiently deformed,
it undergoes irreversible, or plastic deformation. Tra-
ditionally, plastic deformation of crystalline solids has
been considered to be a smooth process in time, and ho-
mogeneous in space, since fluctuations are expected to
average out at sufficiently large spatial scales. On small
spatial scales, however, intermittent motion of disloca-
tions is observed, resulting in a pattern of deformation
that is spatially inhomogeneous and intermittent in time.
This behavior is associated with a coherent motion of the
dislocations that releases stress by slip avalanches: se-
quences of events with long-range correlations in space
and in time. The slip avalanches span several orders of
magnitude in size and the energy released is distributed
according to a power law [1–6].

Theoretical models, including discrete dislocation dy-
namics models [1, 7–11], continuum models [7, 11–13],
phase field models [11, 14] and phase field crystal mod-
els [15] are able to reproduce many of the experimental
findings and reveal scale invariant, power-law distributed
phenomena that are indicative of a non-equilibrium criti-
cal point [16]. The dislocation system is jammed below a
critical value of the external stress. Applying a constant
external stress above the critical (yield) stress allows the
system to flow, and the dislocations are unjammed. It is
important to stress that in the glide plane of the dislo-
cations, there is effectively no external potential, so that
the jamming is an emergent phenomenon. However, re-
cent work has shown that the behavior of the transition
appears to be in the universality class of the interface
pinning-depinning transition [11, 15], as if there was an
effective external potential induced by the collective in-
teractions between the dislocations.

In this Letter we study connections between the plas-
tic yield point of systems with long range interactions,
such as dislocation systems and the jamming transition
of systems with short range interactions, such as sheared
granular materials and molecular liquids [17–20]. When
a system jams it undergoes a transition from a flowing
state (analogous to a depinned phase) to a rigid state
(analogous to a pinned phase). In contrast to the or-
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FIG. 1: (color online) Proposed phase diagram for dislocation
systems. Notice the absence of a jamming point.

dered solid phase obtainable via crystallization, the solid
phase reached via jamming remains disordered. Liu and
Nagel [17], O’Hern et al. [18, 19] and others [20] studied
jamming of granular materials with short range interac-
tions in simulations and experiments. They found that
below a critical density these materials do not jam at any
stress. This critical density is called the jamming point
J of granular materials. In contrast, we show here that
dislocations jam at any nonzero density, i.e. dislocations
have no jamming point. The physical reason is that dis-
locations have long range interactions that can lead to
pinning for arbitrarily large distances between the dislo-
cations. Fig. 1 sketches the putative jamming phase
diagram (in the absence of screening) for dislocation-
mediated plasticity. It is closely related to the jamming
phase diagram of [20] for granular materials, except for
the absence of a jamming point J for dislocations.

In the following we employ analytical calculations and
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discrete dislocation dynamics simulations to study how
the critical yield stress depends on the dislocation density
ρ. Our analytical calculations verify and generalize the
numerical findings.

The Model:- We place N straight edge dislocations par-
allel to the z-axis in a square box of side L. They are
allowed to glide only along the shear direction (x-axis),
while they can interact in the x and y directions. This
simulates a single-slip system. Materials, like ice, with
strong plastic anisotropy, deform by glide on a single
plane [1]. In these systems dislocation climb is negli-
gible due to high plastic anisotropy. The z direction has
been shown to be irrelevant to scaling [1, 7–10] effectivelly
rendering the problem two-dimensional. An edge dislo-
cation with Burgers vector~b = (b, 0) produces in the host
medium an elastic shear stress at a distance ~r = (x, y),

τint(~r) =
bµ

2π(1− ν)
x(x2 − y2)
(x2 + y2)2

(1)

where µ is the shear modulus and ν is the Poisson ratio
of the host medium [21]. This is anisotropic in the (x,y)-
plane and decays as τint ∼ 1/r at large r =

√
x2 + y2. If

an external shear stress τext is applied the overdamped
equation of motion of a dislocation along the shear direc-
tion is described by,

η
dxi
dt

= bi(
N∑
j 6=i

τint(~rj − ~ri)− τext) (2)

for i, j = 1, ..., N where xi is the x coordinate of the
ith dislocation at point ~ri with Burgers vector bi, ~rj with
j 6= i are the coordinates of the other N−1 dislocations, t
is time and η is the effective viscosity in the host medium
[1, 7, 8]. Here we have set the temperature to T = 0. For
the computer simulations we have set the distance scale
b = 1 and the time scale t0 = η/(µ/(2π(1 − ν)) = 1.
To simulate bulk materials we employ periodic boundary
conditions in both x and y directions.

To treat the long-range character of the dislocation in-
teraction, we found the Lekner method [22] of image cells
particularly straight forward. The equations of motion
are solved by the adaptive-step fifth-order Runge-Kutta
method [23]. The dislocation number is constant, since
so far we considered neither dislocation creation nor an-
nihilation. Equal numbers of dislocations with positive,
~b = +x̂, and negative, ~b = −x̂, Burgers vectors, render
the system neutral. The dislocation collective speed (also
called activity) V (t), is defined as, V (t) =

∑N
i=1 |vi(t)|

where vi = dxi/dt. The acoustic emission signal is pro-
portional to the dislocation collective speed. Another
popular choice is V (t) =

∑N
i=1 bivi(t), which is propor-

tional to the strain rate [11].
Adiabatic Increase of External Stress:- First we con-

sider the quasi-static or adiabatic case. After randomly
placing the dislocations in the square cell, we let the sys-
tem relax to the nearest (metastable) equilibrium state.
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FIG. 2: (color online) (top) Time dependence of the collective
speed of all N = 64 dislocations in a square box of side L =
100. (bottom) The stress plotted against the total dislocation
displacement for the same run. Displacement at time t is the
total distance all the dislocations traveled from the beginning

of the simulation (t = 0) till time t:
∫ t
0
dt′

∑N

i=1
bidxi(t

′). The
arrows indicate the start and finish of the last large avalanche.
(Note that in the stress vs displacement bottom figure the
equilibration occurs at zero external stress.)

During that procedure we apply zero external stress. As
the system approaches the nearest energy minimum the
dislocation motion slows down. A simple eigenmode
analysis shows that the time needed for the system to
reach zero activity diverges. We assume that the system
is sufficiently close to the energy minimum when the dis-
location activity has fallen below a threshold, Vth = 0.1,
which is roughly 100 times less than the initial activity
of the N = 64 dislocation system. Once the system’s
activity has fallen below the specified threshold we start
increasing the external stress adiabatically slowly. As
soon as the adiabatically slowly increased stress pushes
the system’s activity above the threshold, V (t) > Vth and
the system produces an avalanche, we keep the external
stress constant until the avalanche stops (Fig. 2). The
scaling behavior is insensitive to the threshold for a value
up to ten times larger and smaller.

The system starts with small avalanches and as the
stress τ approaches the flow stress τc, it responds with
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FIG. 3: (color online) (top) The cumulative distribution of
critical stresses τc for 5 different numerical densities. Each
curve is extracted from 288 runs with N = 64, 32, 16 disloca-
tions and 96 runs with N = 48, 24 dislocations in a square
box of side L = 100. The smaller the density, the nar-
rower the distribution and smaller the mean τc (see next
Fig. 4). (bottom) We obtain a good collapse using the
curves with the three larger densities based on the expres-

sion p(τc, ρ) ∼ ρλf [τcρ
λ′ ]. The collapse quantifies the fact

that the distributions get steeper and have a smaller mean
for lower density ρ. λ = 0 since the cumulative probability
is restricted in [0, 1]. λ′ = −0.5 ± 0.02. The rescaling of the
horizontal axis indicates that τc ∼ ρ0.5.

larger and larger avalanches until at τc it finally flows
steadily with an infinite avalanche. For τ > τc, the dis-
locations keep moving indefinitely, exiting from one side
of the simulation cell and reemerging at the other due to
the periodic boundary conditions, without ever getting
jammed (pinned) again. In a deformation experiment,
this is the point when the sample yields. In summary,
for τ < τc the system is jammed (pinned). For τ > τc
the system is constantly flowing (yielding) (Fig. 2).

Jamming:- The critical stress τc is not a universal
quantity and every system with the same number of dis-
locations and box size has a different τc. We performed
an adiabatically slow increase of the stress for different
dislocation densities, ρ = N/L2. The cumulative distri-
butions of the critical stresses is shown in top Fig. 3.
One can observe that the distributions become narrower

for smaller densities, as does the mean critical stress of
the ensemble. The scaling collapse shown in bottom Fig.
3 gives the relationship τc ∼

√
ρ.
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FIG. 4: (color online) The mean critical stress 〈τc〉 plot-
ted against the inverse numerical density ρ. The system is
jammed for τ < τc and unjammed above it. Each point is
extracted from 288 runs with N = 64, 32, 16, 8 dislocations
and 96 runs with N = 48, 24, 12 dislocations in a square box
of side L = 100. The critical stress has a similar qualita-
tive dependence on the density as in the proposed jamming
phase diagram by Liu and Nagel [17]. However for disloca-
tions τc(ρ) > 0 for all non-zero densities ρ.

The dislocation system exhibits jamming for τ < τc
analogous to the work of Liu and Nagel [17] and O’Hern
et al. [18, 19]. Their systems are different from ours in
that they had exclusively short range interactions (con-
tact interactions of soft spheres) and we have long-range
(besides the core interactions that are enforcing the ”no
climb” constraint). They observed similar distributions
of depinning stresses and a similar concave up depen-
dence of the flow stress on the density (Fig. 4). However
in contrast to their results, we neither expect nor find a
jamming point equivalent to their jamming point J where
τc = 0. This means there can be no density, however
small, that will unjam our system at zero applied ex-
ternal stress. The reason is that dislocations have long-
range interactions [20]. No matter how far apart they
are, they always feel each other.

Theoretical Calculation of Critical Stress:- Consider
N+
R,∆R positive and N−R,∆R negative edge dislocations

parallel to the z-axis randomly distributed on a ring of ra-
dius R and thickness ∆R on the (x, y)-plane. The stress
exerted at the origin is given by,

τR,∆R =
∫ R+∆R

R

d2r
ρ+(r, θ)− ρ−(r, θ)

r
K(θ) (3)

adapted from [24] using Eq.(1) where K(θ) ∼

cos(θ) cos(2θ) and ρ±(r, θ) =
∑N±

R,∆R
i=1

δ(r−ri)
rd−1 δ(θ − θi).

We express all distances in terms of l, the mean disloca-
tion distance, i.e. ρ = N/Ld = 1/ld in d dimensions, i.e.
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X = R/l and x = r/l. For any power law r−α interac-
tion, we get τX,∆X = ld

lα

∫X+∆X

X
ddxρ

+(x,θ)−ρ−(x,θ)
xα K(θ)

with ρ±(x, θ) = 1
ld

∑N±
X,∆X

i=1
δ(x−xi)
xd−1 δ(θ − θi). For small

ring thickness we can approximate the integral with the
value of the integrand at X times ∆X. The average over
the number of the dislocations to first order gives

〈τX,∆X〉 ∼
1
lα

∆X
Xα

(〈N+
X,∆X〉 − 〈N

−
X,∆X〉) = 0 (4)

with 〈N+〉 = 〈N−〉 = 〈N〉. The effect of the number
fluctuations on the stress per ring thickness is:

〈(τX,∆X
∆X

)2〉 ∼
〈(N+

X,∆X −N
−
X,∆X)2〉

l2αX2α
∼ 1
l2α
〈NX,∆X〉
X2α

(5)

since N± are independent random variables, Poisson dis-
tributed with the same mean and variance. Assuming
that there are N dislocations of each kind in the entire
area Ld where XL = L/l >> 1, their mean number in the
ring can be expressed as 〈NX,∆X〉 ∼ N Xd−1∆X

Xd
L

. Substi-

tuting into Eq.(5) we find, 〈( τX,∆X∆X )2〉 ∼ 1
l2α

N
Xd
L

∆X
X2α−d+1

Integrating over the entire region,

τ2

Xd
L

≡
∫
〈(τX,∆X

∆X
)2〉 ∼ 1

l2α
N

Xd
L

∫ XL

Xmin

dX

X2α−d+1
(6)

with Xmin ∼ O(1) the closest possible distance between
2 dislocations gives: τ√

N
∼ 1

lα
1√

2α−d

√
1

X2α−d
min

− 1

X2α−d
L

for 2α > d. In the thermodynamic limit, XL → ∞,
this translates to the stress scaling as τ√

N
∼ 1

lα ∼ ρ
α
d .

For 2α < d, τ√
N
∼ 1

lα
1√
d−2α

√
Xd−2α
L −Xd−2α

min and the
thermodynamic limit doesn’t exist. For parallel straight
edge dislocations in 2 dimensions 2α = d = 2 and

τ√
N
∼ 1
l

√
ln(L/l) ∼ √ρ

√
ln(L/l) (7)

This agrees with our numerical result in bottom Fig. 3.
The extraction of logarithmic corrections requires much
larger systems than the ones that can be simulated.

Discussion:- We were able to show, using a discrete dis-
location dynamics model, that the mean critical stress of
an ensemble of dislocation systems with long-range in-
teractions, τint ∼ 1/r, scales with the square root of the
dislocation density, 〈τc〉 ∼

√
ρ, for straight parallel edge

dislocations. Eq. (7) also agrees with the Taylor harden-
ing relation [21] and is analogous to the effective velocity
of a point vortex in 2 dimensional hydrodynamics [25].
We were able to perform the analytical calculation for
any power law interaction, τint ∼ 1/rα, and for arbi-
trary d dimensions. The theoretical result agrees with
our simulation up to logarithmic corrections which are
difficult to measure at system sizes amenable to simula-
tion. Our results, both numerical and theoretical, show

that for dislocations or particles with long-range interac-
tions there can be no jamming point at a finite density
(only at ρ = 0), provided there is no screening.
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