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We study the quantum stabilization of a cosmic string by a heavy fermion doublet in a reduced
version of the standard model. We show that charged strings, obtained by populating fermionic
bound state levels, become stable if the electro–weak bosons are coupled to a fermion that is less
than twice as heavy as the top quark. This result suggests that extraordinarily large fermion masses
or unrealistic couplings are not required to bind a cosmic string in the standard model. Numerically
we find the most favorable string profile to be a simple “trough” in the Higgs vev of radius ≈ 10−18 m.
The vacuum remains stable in our model, because neutral strings are not energetically favored.

Introduction Various field theories suggest the exis-
tence of string–like configurations, which are the parti-
cle physics analogues of vortices or magnetic flux tubes
in condensed matter physics. They are called cosmic
(or Z–)strings to distinguish them from the fundamen-
tal variables in string theory and to indicate that they
can stretch over cosmic length scales. They can have sig-
nificant cosmological effects [1] and thus may be relevant
to the early universe. Stable strings within the standard
model of particle physics would be particularly interest-
ing because they could be observable today.

In the standard model, string configurations [2–4] are
not topologically stable and thus can only be stabilized
dynamically. Here we focus on the role heavy fermions
can play in this stabilization. Since fermions can lower
their energy by binding to the string, their binding energy
can overcome the classical energy required to form the
string background. However, once we include the contri-
bution to the energy from bound fermions, we must also
include the contribution from the distortion of the entire
fermion spectrum, i.e. the vacuum polarization energy,
since both contributions enter at order ~.

A string configuration with a vortex structure intro-
duces non–trivial behavior at spatial infinity. This prop-
erty invalidates the straightforward application of stan-
dard methods to compute the vacuum polarization en-
ergy. Recently we have shown how to carry out such a
calculation by choosing a particular gauge [5, 6]. We are
thus in a position to consistently include fermionic contri-
butions to the dynamical stabilization of cosmic strings.

Naculich [7] has shown that in the limit of weak cou-
pling, fermion fluctuations destabilize the string. The
quantum properties of Z–strings have been connected to
non–perturbative anomalies [8]. A first attempt at a full
calculation of the quantum corrections to the Z–string
energy was carried out in ref. [9]. Those authors were
only able to compare the energies of two string configu-
rations, rather than comparing a single string configura-
tion to the vacuum; these limitations arise from the non–
trivial behavior at spatial infinity. The fermionic vac-
uum polarization energy of the Abelian Nielson–Oleson

vortex has been estimated in ref. [10] with regularization
limited to the subtraction of the divergences in the heat–
kernel expansion. Quantum energies of bosonic fluctua-
tions in string backgrounds were calculated in ref. [11].
Previously, we have pursued the idea of stabilizing cos-
mic strings by populating fermionic bound states in a
2 + 1 dimensional model [12]. Many such bound states
emerge and some configurations even induce an exact
zero–mode [7]. Nonetheless, stable configurations were
only obtained for extreme values of the model parame-
ters. In 3+1 dimensions, stability is more likely because
quantization of the momentum parallel to the symmetry
axis yields an additional multiplicity of bound states.

Model and Ansatz We consider a model of the elec-
troweak interactions in D = 3 + 1 dimensions with some
technical simplifications, which we will justify a posteri-

ori. We set the Weinberg angle to zero, so that electro-
magnetism is decoupled from the theory and the SU(2)
gauge bosons are degenerate. We also neglect QCD inter-
actions, though we include the NC = 3 color degeneracy
in computing the fermion contribution to the string en-
ergy. Finally, we consider a single heavy doublet that is
degenerate in mass, neglecting CKM mixing and mass
splitting within the doublet. The classical Higgs and
gauge fields are described by the Lagrangian

Lφ,W = −1

2
tr (GµνGµν) +

1

2
tr (DµΦ)† DµΦ

−λ

2
tr

(

Φ†Φ − v2
)2

, (1)

where Φ represents the Higgs doublet φ = (φ+, φ0) as a

matrix, Φ =

(

φ∗
0 φ+

−φ∗
+ φ0

)

, the gauge coupling constant

enters via the covariant derivative Dµ = ∂µ − igWµ, and
the SU(2) field strength tensor is Gµν = ∂µWν −∂νWµ −
ig [Wµ, Wν ]. We then have the fermion Lagrangian

LΨ = iΨ(PLD/ + PR∂/)Ψ − f Ψ
(

ΦPR + Φ†PL

)

Ψ , (2)

where the Yukawa coupling f controls the strength of the
Higgs–fermion interaction, which generates the fermion
mass. Our model is thus characterized by the fermion
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mass mf = fv, the gauge boson mass mW = gv/
√

2, the

Higgs mass mH = 2v
√

λ, and the Higgs vacuum expec-
tation value (vev) v. When we introduce the fermionic
quantum corrections, we impose on–shell renormalization
conditions, in which we hold fixed mH , v, and the residue
of the pole in each particle’s propagator. These choices
exhaust the available counterterms, so we have to adjust
the gauge coupling g to match the physical gauge boson
mass. Since we neglect boson loops, this renormalization
scheme also leaves the fermion mass unchanged.

We construct the string as a classical background field
that is translationally invariant in the z-direction. We
work in Weyl gauge W 0 = 0 and also introduce a pa-
rameter ξ1 that allows us to include a gauge field with
winding number n. We set n to unity in the actual cal-
culations. The gauge and Higgs fields are then

~W = n s
fG(ρ)

gρ
ϕ̂

(

s ic e−inϕ

−ic einϕ −s

)

and Φ = vfH(ρ)

(

s e−inϕ −ic
−ic s einϕ

)

, (3)

where s = sin(ξ1) and c = cos(ξ1), and (ρ, ϕ) are polar
coordinates in the plane perpendicular to the string axis.
This ansatz yields the classical energy per unit length

Ecl = 2π

∫ ∞

0

dρ ρ

[

2

g2

(

f ′
G

ρ

)2

+ v2 (f ′
H)

2

+
v2

ρ2
f2

H (1 − fG)2 + λv4
(

1 − f2
H

)2

]

,(4)

where primes denote derivatives with respect to ρ. Vari-
ational width parameters wH and wG enter through the
respective profile functions for each field,

fH(ρ) = 1−exp (ρ/wH) , fG(ρ) = 1−exp (−ρ
2/w2

G
) . (5)

Energy Considerations We compute the total binding
energy per unit length as a sum of three terms:

Etot = Ecl + NC(Evac + Eb) . (6)

The classical energy per unit length depends on the
model parameters and the variational parameters wH ,
wG and ξ1. The two contributions in eq. (6) propor-
tional to NC summarize the fermionic effects. We mea-
sure all dimensionful quantities in comparison to appro-
priate powers of mf , so that Evac and Eb only depend
on the ansatz parameters wH , wG and ξ1.

1 QCD effects
only enter via the degeneracy factor NC : since the con-
sidered energy scales are well above the QCD scale, these
interactions can be neglected due to asymptotic freedom.

1 There is a weak (logarithmic) dependence on the model parame-
ters introduced via the on–shell renormalization conditions; it is
small for the values of the coupling constants we consider.

The fermionic effects are computed from the single par-
ticle Dirac Hamiltonian in the two–dimensional subspace
orthogonal to the symmetry axis of the string2. The pro-
files fG and fH act as potentials in this Hamiltonian.

The vacuum polarization energy per unit length in the
string background Evac is the computationally most ex-
pensive part of the calculation. It is computed from the
scattering solutions to the single particle Hamiltonian us-
ing the spectral method [5, 13, 14]. This part involves a
number of technical subtleties associated with the long–
ranged string potential [6, 15].

Finally, the single particle Hamiltonian has many
bound state solutions; for ξ1 = π

2 there exists an ex-
act zero mode. By explicitly populating these bound
states, we add charge to the string. Numerically, we
compute bound state energies in the string background
by discretizing the reduced two–dimensional system in
a finite box and diagonalizing the Hamiltonian matrix
numerically. Let ǫi ≤ mf be an eigenvalue of the two–
dimensional Dirac Hamiltonian. Then a state has energy
[

ǫ2i + p2
]1/2

, where p is its conserved momentum along
the symmetry axis. To count the populated states, we
introduce a chemical potential µ such that min{|ǫi|} ≤
µ ≤ mf . States with [ǫ2i + p2]

1/2 < µ are filled while
states with [ǫ2i + p2]

1/2 > µ remain empty, which gives
a Fermi momentum Pi(µ) = [µ2 − ǫ2i ]

1/2 for each bound
state. According to the Pauli exclusion principle we can
occupy each state only once. This yields the charge den-
sity per unit length of the string

Q(µ) =
1

π

∑

ǫi≤µ

Pi(µ) , (7)

where the sum runs over all bound states available for a
given chemical potential.3

Eq. (7) can be inverted to give µ = µ(Q). In numerical
computations we prescribe the left–hand–side of eq. (7)
and increase µ from min{|ǫi|} until the right–hand–side
matches. From this value µ = µ(Q), the binding energy
per unit length

Eb(Q) =
1

π

∑

ǫi≤µ

∫ Pi(µ)

0

dp

[

√

ǫ2i + p2 − mf

]

(8)

can be computed as a function of the prescribed charge.
In this manner the total energy becomes a function of the
charge density of the string. Filling the available states
up to a common chemical potential minimizes Eb: if the

2 We refrain from displaying this Hamiltonian, which we extract
from eq. (2). For actual computations a specific gauge must be
adopted, complicating its presentation [6, 15].

3 Ambiguities in this relation due to different boundary conditions
at the end of the string show up at subleading order in 1/L where
L is the length of the string and can thus be safely ignored.
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FIG. 1: (Color online) Total bound state and vacuum energy
per unit length as a function of charge density per unit length,
in units of the fermion mass, for ξ1 = 0.4π. The dotted line
indicates the minimal fermionic contribution to the energy.

towers of states built upon two different ǫi had different
upper limits, the energy would be lowered by moving a
state from the tower with the larger limit to that with
the lower one, without changing the charge.

Our central task is to find Higgs–gauge field configu-
rations that yield Etot < 0 for a prescribed value of the
charge density, Q. In doing so, we must take care that
any binding we observe is not an artifact of the Landau
pole, which eventually sends Evac to minus infinity as wH

and/or wG tend to zero. It arises because in our approxi-
mation (neglecting contributions from bosonic loops) the
model is not asymptotically free. Once we identify a con-
figuration and parameter set with interesting numerical
results we use a method similar to that of ref. [16] to
ensure that the Landau pole contribution is negligible.

Results The similarity to the standard model suggests
the model parameters

g = 0.72 , v = 177 GeV , mH = 140 GeV , f = 0.99 . (9)

The Yukawa coupling estimate is obtained from the top–
quark mass mt = 175 GeV. To consider a fourth gener-
ation with a heavy fermion doublet that couples to the
standard model bosons, we will vary the Yukawa coupling
but keep all other model parameters fixed.

For the configurations we consider, the classical energy,
eq. (4), is dominated by the Higgs potential contribution,
which scales as λw2

H/(f4NC) compared to the fermionic
contributions. As ξ1 → 0, the gauge field contribution
goes to zero, so this choice is favored classically. We will
see that ξ1 ≈ 0 remains favored when Evac and Eb are
included, so that the stable charged string obtained in
our model is simply a “trough” in the Higgs vev, without
significant gauge field contributions.

We give all numerical results in units of mf or 1/mf

as appropriate. In fig. 1 we display the fermion con-
tributions for various sets of ansatz parameters. These
lines terminate at an end point where all available bound
states (for all longitudinal momenta) are populated and
the charge cannot be increased any further. The fermion

contributions favor a wide string for large charges, while
they cause the string to shrink for small charges. For
very small charges, corresponding to small widths, the
calculation is unreliable because of the Landau pole.4

When we add more configurations, we observe a lin-
ear relation between the charge and the minimal fermion
contribution to the energy, even though for any given con-
figuration, the fermion energy depends quadratically on
the charge, cf. eqs. (7) and (8). This linear dependence
arises from a delicate balance between the vacuum po-
larization (which determines the y–intercept for a given
configuration) and the binding energies (which determine
the Q dependence). Figure 1 also suggests that the width
of the Higgs profile, wH , is the dominating scale (which
is corroborated in fig. 3, where Eb + Evac is seen to be
nearly independent of ξ1, and thus of wG.) Both the num-
ber of two–dimensional bound states and the magnitude
of their binding energies ǫi − mf vary roughly linearly
with wH . As a result, the minimal fermion contribu-
tion scales quadratically with wH , as the classical energy
does. To decide if the string is stable we have to compare
the leading scaling with w2

H in Ecl and Evac + Eb. For
large widths, the string is stable if the resulting coeffi-
cient of the scaling with w2

H is negative. For physically
motivated parameters, eq. (9), the classical energy dom-
inates and there is no binding for any charge. However,
as mentioned above, the relative contribution from Ecl

decreases like 1/f4. So even a moderate increase of the
fermion mass could lead to binding. We remark that ex-
trapolating the straight line in fig. 1 predicts that the
vacuum energy should vanish for very narrow strings, as
we would expect. This estimate overcomes the Landau
pole obstacles that arise in a direct computation.

To search for a stable string of fixed charge Q, we have
computed the vacuum polarization energy and the bound
state energies from the two–dimensional Hamiltonian for
several hundred configurations characterized by specific
values of the ansatz parameters wH , wG and ξ1. We then
prescribe the charge Q and, for those configurations that
can accommodate it according to eq. (7), we compute
the binding energy as in eq. (8). Once we have computed
the fermionic contribution to Etot, the classical energy
is a simple spatial integral, which requires a negligible
amount of additional computation. As a result, in this
procedure it is most efficient to vary the Yukawa cou-
pling. For a given charge, we then have a large set of
configurations that are labeled by given (discrete) values
of the variational parameters. We scan this set for the
minimal total energy. If the variational parameters cov-
ered the full configuration space, this treatment would be

4 The problem arises for widths much less than unity and coupling
coupling constants of order five or larger. In our numerical search
for stable configurations we only consider wH ≥ 2 and wG ≥ 2.
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FIG. 2: (Color online) Total energy per unit length of optimal
string configurations as a function of charge per unit length,
in units of the fermion mass.

equivalent to the self–consistent construction of the min-
imal energy configuration. With our restriction to the
variational space, however, we only find an upper limit
to the exact minimum; if our treatment detects a bound
configuration, the existence of a stable charged cosmic
string is established.

In fig. 2, we show the full energy per unit length Etot

as a function of the charge density per unit length for
a variety of Yukawa couplings f . The sharp increase at
small Q is an artifact of the restriction of the ansatz pa-
rameters, cf. footnote 4. Increasing the Yukawa coupling
from its top–quark value decreases the relative contribu-
tion from Ecl to Etot. We see that at f ≈ 1.6 the large
width pieces from Ecl and Evac + Eb approximately can-
cel. Increasing the Yukawa coupling only slightly more,
e.g. to f & 1.7, yields a negative total energy per unit
length at large charge densities, which indicates that the
string is lighter than the corresponding density of free
fermions. This limit corresponds to a fermion mass of
about 300 GeV with a typical width for the stable charged
string of about 10−18m (wH ≈ 4/mf).

Surprisingly, we find that the fermion contribution to
the energy is nearly independent of the ansatz parameter
ξ1, as shown in fig. 3. Even though the bound state
spectrum varies strongly with ξ1, and Evac +Eb depends
only weakly on ξ1[6], there are subtle cancellations within
the bound state spectrum itself that yield such a tiny
gauge field dependence of the fermion energy. As g ≪ f ,
the gauge field terms increase Ecl for ξ1 6= 0. Hence Etot

is minimized for ξ1 ≈ 0 in the cases we have studied.
Discussion We have seen that a heavy fermion dou-

blet can stabilize a nontrivial string background in a
simplified version of the electroweak standard model for
a non–zero fixed charge density. Light fermions would
contribute only weakly to the binding of the string, since
their Yukawa couplings are small. As a result, we can add
them to our model, e.g. to accommodate anomaly can-
cellation, without significantly changing the result. The
resulting configuration is essentially of pure Higgs struc-
ture. Any additional (variational) degree of freedom can

0 5 10
 Q

-1.0

-0.5

0.0

0.5

 E b + 
E va

c

ξ1 = 0

ξ1 = 0.05π

ξ1 = 0.1π

ξ1 = 0.2π

ξ1 = 0.3π

ξ1 = 0.4π

ξ1 = 0.45π

ξ1 = 0.5π

FIG. 3: (Color online) Fermionic contribution to the string
binding energy per unit length as a function of charge density
per unit length, in units of the fermion mass, for a variety of
values of ξ1 and wH = 6.0 and wG = 6.0.

only lower the total energy. Hence embedding this config-
uration in the full standard model, with the U(1) gauge
field included, also yields a bound object. We see binding
set in at mf ≈ 300 GeV, which is still within the range
of energy scales at which the standard model should pro-
vide an effective description of the relevant physics, and
also within the range to be probed at the LHC. For such
fermion masses, recent calculations have also suggested
the potential stability of multi–fermion bound states in
a Higgs background [17, 18].

The fermion bound states carry non–zero angular mo-
menta, implying that the bound state wave–functions de-
pend on the azimuthal angle. This might induce a more
complicated spatial structure of the string configuration
than the one adopted in eq. (3). In particular, the cylin-
drical analog of spherical “hedgehog” configurations, rep-
resenting a Higgs field with unit winding within a U(1)
subgroup of the full SU(2) isospin group, could be an
interesting extension of our work. Such alterations can
only lower the total energy, however.
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