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Weinberg’s seminal prediction of the cosmological constant relied on a provisional method for
regulating eternal inflation which has since been put aside. We show that a modern regulator, the
causal patch, improves agreement with observation, removes many limiting assumptions, and yields
additional powerful results. Without assuming necessary conditions for observers such as galaxies
or entropy production, the causal patch measure predicts the coincidence of vacuum energy and
present matter density. Their common scale, and thus the enormous size of the visible universe,
originates in the number of metastable vacua in the landscape.
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Introduction The smallness of the cosmological con-
stant, Λ, has long posed a hierarchy problem: why is
the energy of the vacuum at least sixty orders of mag-
nitude smaller than the natural value expected from the
Standard Model [1–3]? The actual magnitude of the cos-
mological constant was measured more recently [4–6]; it
poses, in addition, a coincidence problem. The vacuum
energy, ρΛ ≡ Λ

8π ≈ 1.4× 10−123, is comparable in magni-
tude to the present matter density. (We use Planck units,
with c = ~ = G = 1.) This constitutes a coincidence of
two a priori unrelated timescales, tΛ ∼ ρ

−1/2
Λ , the time

at which vacuum energy begins to dominate, and tobs,
the time at which observers exist.

In a theory that contains a sufficiently dense discre-
tuum of values of Λ, anthropic selection can explain the
smallness of Λ. Weinberg [7] argued that observers re-
quire galaxies, which form only if tΛ & tgal, where tgal is
the time at which density perturbations grow nonlinear.
This approach successfully predicted a nonvanishing cos-
mological constant, and it explains the coincidence that
tΛ ∼ tgal. It has the following limitations: (i) It does
not explain the coincidence tobs ∼ tΛ. There is no reason
a priori why tobs should not vastly exceed tgal. (ii) It
applies only to observers whose existence depends on the
formation of galaxies. (iii) It actually favors values of Λ a
few orders of magnitude larger than the observed value.
(iv) It explains one unnaturally large timescale, tΛ, in
terms of another, tgal. The fundamental origin of either
scale remains unclear. (v) The prediction was based on
a cosmological measure, observers per baryon, that has
been ruled out phenomenologically [8].

The causal patch measure transcends these limitations.
It explains the coincidence tΛ ∼ tobs from geometric
properties, assuming only that observers are made of
matter or radiation; and it relates the absolute scale,
10−123, to the size of the landscape.

Results Our first result, tΛ ∼ tobs, solves the coin-
cidence problem and predicts that observers are most
likely to find themselves at the onset of vacuum domina-
tion. Our second result, tc ∼ tobs, predicts another coin-
cidence: that the timescale associated with spatial curva-
ture is comparable to tobs. Our third result, tobs ∼ N̄ 1/2,
explains the origin of the enormous phenomenological
scales governing the visible universe, such as its size and
age, in terms of the number of landscape vacua that can
be cosmologically produced and which contain observers,
N̄ . It can be regarded as a prediction for N̄ .

These results obtain under a simple qualitative as-
sumption that a certain function describing the distribu-
tion of observers in the landscape grows monotonically.
No specific anthropic conditions are assumed to be nec-
essary for observers. We stress that N̄ will be smaller
than N , the total number of vacua, due to anthropic and
cosmological selection effects, neither of which we will
consider in this paper. Intriguingly, preliminary anal-
yses [9, 10] suggest log(N 1/2) ∼ O(100) for a class of
vacua [11]. If this class dominates the landscape, then
our prediction implies that log N̄ is not very much smaller
than logN , and that the fundamental origin of hierarchy
lies in the number of topological cycles of complex three-
manifolds.

Relation to other work Polchinski [2] first articulated
the question of the ultimate origin of the scale of the
cosmological constant in the context of the landscape.
Refs. [3, 12] anticipated the answer reached in the present
paper but not its derivation. Less general derivations
have been proposed for special classes of vacua [13, 14], or
under the assumption that observers arise in proportion
to the entropy produced [15, 16]. An antecedent [16] of
our arguments employed the causal diamond, a measure
that is somewhat less well-defined than the causal patch.

No specific anthropic assumptions are made, and
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FIG. 1. Conformal diagram of a portion of the multiverse.
The dashed line shows an infinite hyperbolic surface of con-
stant FRW time tobs. The causal patch (shaded) restricts
attention to the finite portion that lies within the event hori-
zon.

our results apply to arbitrary observers in arbitrary
vacua. Parameters like the masses of leptons [17], or the
timescales of structure formation [13], may be correlated
with tobs, but they are defined only in small portions of
the landscape and will not be considered here. Here, we
restrict to vacua with Λ > 0. In a separate publication,
we will consider other measures and vacua with negative
cosmological constant.

Derivation The relative probability for two outcomes
of a cosmological measurement is given by p1/p2 =
N1/N2, where NI is the expected number of times each
outcome occurs in the universe. Thus, the NI play the
role of an unnormalized probability distribution. A dis-
tribution dp/dx over a continuous parameter x can be
computed as the number dN of outcomes occurring in
the range (x, x+ dx).

The landscape of string theory contains long-lived
de Sitter vacua which give rise to eternal inflation [9].
Globally, every experiment and every possible outcome
occurs infinitely many times: NI = ∞. To obtain well-
defined relative probabilities, we use the causal patch
measure [12, 18], which computes NI in the causal past
of a point on the future boundary of spacetime (Fig. 1).

Consider an arbitrary observer who lives at an FRW
time of order tobs. What order of magnitude for tΛ and
tc is he likely to observe? This is described by the prob-
ability distribution over log tΛ and log tc at fixed log tobs,
which can be written as

dp

d log tΛd log tc
=

dp̃

d log tΛd log tc
nobs . (1)

We will begin by computing this distribution; later we
will allow tobs to vary as well.

The first factor in Eq. (1) is the “prior probability”; it
corresponds to the expected number of times a vacuum
with specified values of log tΛ and log tc is nucleated in
the causal patch [19]. This is proportional to the num-
ber of such vacua in the landscape multiplied by the rate
at which they are produced cosmologically from specified
initial conditions. But this rate will be independent of tΛ

and tc in the regime of interest (tΛ � 1). In the string
landscape, a decay changes Λ enormously compared to
the energy scales associated with tΛ and tc in the daugh-
ter vacuum. Thus, the decay chains leading to vacua of
interest have no information about the eventual values of
tΛ and tc.

Vacua with Λ ∼ 1 contain only a few bits of causally
connected information [20], and hence no complex sys-
tems of any kind. Thus, we may restrict attention to
vacua with Λ � 1 and keep only the leading order in
a Taylor expansion of the density of vacua near Λ = 0,
dN/dΛ = const [7]. With tΛ ∼ Λ−1/2, this implies

dp̃

d log tΛd log tc
= t−2

Λ g(log tc) . (2)

Here g encodes the prior probability distribution over the
time of curvature domination.

The second factor in Eq. (1) is the number of ob-
servers present within the causal patch at the time
tobs, averaged over all vacua with the given values of
(log tΛ, log tc, log tobs) using the prior distribution. It can
be written as

nobs(log tΛ, log tc; log tobs) = MCP h , (3)

whereMCP(log tΛ, log tc; log tobs) is the total matter mass
present within the causal patch at the time tobs, and
h(log tΛ, log tc; log tobs) is the number of observers per
unit matter mass, again averaged over vacua with the
given values of the parameters using the prior distribu-
tion. We will argue below that h is trivial in the only
regime where it could possibly affect our result.

We now turn to the computation of MCP. Vacua are
cosmologically produced as open FRW universes [21] with
metric ds2 = −dt2 + a(t)2(dχ2 + sinh2χdΩ2

2), embedded
in an eternally inflating parent vacuum. The bound-
ary of the causal patch coincides with the event hori-
zon for long-lived metastable de Sitter vacua: χCP(t) =∫∞
t
dt′/a(t′).

If tΛ & tc, the universe contains a curvature domi-
nated era. The evolution of the scale factor is governed
by the Friedmann equation, ȧ2/a2 = tc/a

3 + a−2 + t−2
Λ ,

where tc/a3 ∼ ρm is the energy density of pressureless
matter. The remaining terms encode the curvature and
the cosmological constant. (The inclusion of a radiation
term, or the assumption that observers are made from ra-
diation rather than matter, would not affect our results
qualitatively.) A piecewise approximate solution is

a(t) ∼

 t
1/3
c t2/3 , t < tc
t , tc < t < tΛ
tΛe

t/tΛ−1 , tΛ < t .

(4)

Integration yields the comoving radius of the causal
patch:

χCP(t)∼


1 + log(tΛ/tc) + 3[1− ( ttc )1/3], t < tc
1 + log(tΛ/t) , tc < t < tΛ
e−t/tΛ , tΛ < t

(5)
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FIG. 2. The probability distribution over the timescales of
curvature and vacuum domination at fixed observer timescale
tobs, before the prior distribution over log tc and the finiteness
of the landscape are taken into account. Arrows indicate di-
rections of increasing probability. The distribution is peaked
along two degenerate half-lines (thick).

In the regime where curvature never dominates, χCP can
be obtained by setting tc → tΛ in Eq. (5).

The mass inside the causal patch at the time tobs is
MCP = ρma

3Vcom = tcVcom[χCP(tobs)]. The comoving
volume inside a sphere in hyperbolic space, Vcom, can be
approximated by χ3 for χ . 1 (in the regime tΛ < tobs),
and by e2χ for χ & 1 (i.e., for tΛ > tobs). Substitut-
ing into Eqs. (1)–(3), we find the probability distribution
dp/d log tc d log tΛ is

gh×


1/tc , tobs < tc < tΛ I
tc/t

2
obs , tc < tobs < tΛ II

(tc/t2Λ)e−3tobs/tΛ , tc < tΛ < tobs III
1/tΛ , tobs < tΛ < tc V
t−1
Λ e−3tobs/tΛ , tΛ < tobs, tΛ < tc IV

(6)

For the moment, let us ignore the unknown functions
g and h, i.e., set gh constant. Then the probability dis-
tribution is a function of powers and exponentials of tc
and tΛ. Hence, it depends at least exponentially on the
variables log tc and log tΛ, so it will be dominated by its
maximum. In Fig. 2, arrows indicate whether log tc and
log tΛ prefer to increase or decrease (or neither). The ar-
rows do not reflect the precise direction and strength of
the gradient. For example, in region III, the probability
grows with tc, and since the exponential dominates, it
also grows with tΛ; this is indicated by a diagonal ar-
row pointing towards larger log tc and log tΛ. (Recall
that we are holding tobs fixed for now.) By following
the arrows, we recognize that the probability density is
maximal not at a point, but along two degenerate half-
lines of stability: log tΛ = log tobs, log tc & log tobs; and
log tc = log tobs, log tΛ & log tobs.

Let us now include the effects of the two prefactors we
have so far neglected, beginning with h, the number of

observers per unit mass. Crucially, h cannot depend on
tΛ for tΛ � tobs, and it cannot depend on tc for tc � tobs.
This is because in these regimes, curvature or vacuum en-
ergy have no dynamical effect prior to the time tobs, so
they cannot be measured by anything, including h. (One
might imagine that h is correlated with tc due to the prior
distribution; here we assume this is not the case.) For
tc � tobs, we will assume that h is an increasing function
of tc; similarly, for tΛ � tobs, we will assume that h is
an increasing function of tΛ. This assumption seems ex-
traordinarily weak, in the sense that its converse would
be preposterous. The effects of early curvature domina-
tion and vacuum domination are both gravitational, and
thus universal. They limit the amount of matter than
can cohere; the smaller tc or tΛ, the smaller the largest
structure in the universe will be. To deny our assumption
is to claim that on average over many vacua, this disrup-
tion is correlated with an increased number of observers
per unit mass.

We thus arrive at a key intermediate result of this pa-
per: the “anthropic factor” h is irrelevant. Its only pos-
sible effect is to further suppress the probability distribu-
tion in a regime whose integrated probability is already
negligible, namely for tc � tobs or tΛ � tobs. Near the
half-lines of maximal probability, which dominate the dis-
tribution, h will at most contribute factors of order unity,
which we neglect here in any case, and which will not lift
the degeneracy along the two half-lines, because they can
only depend on the variable orthogonal to each line.

The other prefactor, g(log tc), encodes the prior proba-
bility distribution over the time of curvature domination.
We will assume that g decreases mildly, like an inverse
power of log tc. (Assuming that slow-roll inflation is the
dominant mechanism responsible for the delay of cur-
vature domination, log tc corresponds to the number of
e-foldings. If g decreased more strongly, like an inverse
power of tc, then inflationary models would be too rare
in the landscape to explain the observed flatness.) This
will tilt the arrows slightly left in regions IV and V, lifting
the degeneracy along the horizontal half-line. Because of
the logarithmic dependence, the peak at tc ∼ tobs is very
wide, so tc could be large enough for curvature to be
unobservable in vacua with tΛ ∼ tobs [22–24].

The degeneracy along the vertical half-line tc ∼ tobs

would render the probability distribution unintegrable,
unless the effective number of vacua in the landscape, N̄ ,
is finite. By “effective”, we mean that vacua without
observers, and vacua that are very suppressed cosmolog-
ically, are not included in N̄ . The effective spectrum of Λ
is discrete, with spacing of order N̄−1, and the smallest
positive value of Λ will be of this order. Correspond-
ingly, there will be a largest value of tΛ, tmax

Λ ∼ N̄ 1/2.
This “discretuum cutoff” reduces the half-line of maxi-
mal probability to the interval

log tc = log tobs , log tobs . log tΛ . log tmax
Λ . (7)
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So far, we have treated the timescale of observers, tobs,
as a fixed input parameter. We will now extend our
analysis to determine the probability distribution over all
three parameters, including log tobs. Part of this work has
already been done, since our calculation of the mass MCP

within the causal patch took into account the dependence
on tobs as well as on tΛ and tc. The number of observers
per unit mass, h, also includes a tobs-dependence, though
we have yet to make any assumptions about it. For the
joint prior probability, we can write

d3p̃

d log tΛd log tcd log tobs
= f

dp̃

d log tΛd log tc
, (8)

where the last factor is given by Eq. (2), and f ≡
p(tobs|tΛ, tc) is the conditional probability that observers
exist at the time tobs in a vacuum with parameters
(tΛ, tc). We thus find a trivariate probability distribu-
tion simply by multiplying Eq. (6) by the function f .

To analyse this distribution, we will first marginal-
ize over log tΛ and log tc to determine the most prob-
able value of log tobs. Evaluating Eq. (6) at this value
then predicts log tΛ and log tc. We may restrict the in-
tegral over log tc and log tΛ to the neighborhood of the
line interval (7), which contains nearly all of the prob-
ability at any fixed tobs, and in which we argued that
neither f nor h can depend significantly on log tc or
log tΛ. With g ∼ (log tc)−k, k > 1, we find from Eq. (6)
that the marginal probability distribution over log tobs

is fh l t−1
obs, where l is a rational function of log tobs.

Let us assume that the product fh grows more strongly
than linearly with tobs, i.e., that fh ∼ t1+ε

obs ,with ε > 0
[25]. With this assumption, the marginal distribution
becomes tεobsl(log tobs). This favors large values for tobs:
log tobs ∼ log tmax

Λ . At this value of log tobs, the interval
of maximum probability (7) for (log tΛ, log tc) shrinks to
a single point, and we predict

log tΛ ≈ log tc ≈ log tobs ≈ log(N̄ 1/2) . (9)

We thus predict that the number of vacua that con-
tain observers and can be cosmologically produced is
N̄ ∼ 10123. The relation between N̄ and the total num-
ber of vacua in the landscape is not trivial. String theory
contains infinitely many stable supersymmetric vacua,
for example vacua of the form AdSp×Sq, with arbitrary
integer flux. Since we do not live in such a vacuum, it
must be the case that they either cannot contain any
observers, or that their integrated cosmological produc-
tion rate is finite, for example because the production of
very large flux values is highly suppressed. If the specula-
tion that ten-to-the-millions of vacua arise from F-theory
constructions [26] holds up, then similar considerations
would have to apply to explain why log N̄ is so much
smaller.
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