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We extend the concept of entanglement spectrum from the geometrical to the particle bipartite
partition. We apply this to several Fractional Quantum Hall (FQH) wavefunctions on both sphere
and torus geometries to show that this new type of entanglement spectra completely reveals the
physics of bulk quasihole excitations. While this is easily understood when a local Hamiltonian for
the model state exists, we show that the quasiholes wavefunctions are encoded within the model
state even when such a Hamiltonian is not known. As a nontrivial example, we look at Jain’s
composite fermion states and obtain their quasiholes directly from the model state wavefunction.
We reach similar conclusions for wavefunctions described by Jack polynomials.
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Topological phases are highly nontrivial states of mat-
ter whose complete characterization has, despite intense
effort, remained elusive. The parade example of a topo-
logical ordered phase, and the only one so far realized in
experiments, is the Fractional Quantum Hall (FQH) ef-
fect. Active ongoing efforts to understand the physics of
these systems focus on several issues: an important long-
standing research direction in topological phases focuses
on finding the best numerical techniques to identify topo-
logical order in realistic systems. Due to the absence of a
local order parameter, this is a highly nontrivial task. A
related recent research direction has focused on extract-
ing as much information as possible about a topologi-
cal phase – including information about its excitations –
purely from its ground state wavefunction. The deep con-
ceptual question is whether the ground state of a generic
Hamiltonian encodes the complete information about the
universality class of a topologically ordered system, and
if so, what is the best way to extract it.

Towards this end, it has been recently proposed and
numerically substantiated that the physical properties of
the FQH edge can be obtained from the ground state us-
ing the entanglement spectrum (ES)[1]. For a single non-
degenerated ground state |Ψ〉, ES can be defined through
the Schmidt decomposition of |Ψ〉 in two regions A, B
(not necessarily spatial):
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are the eigenvalues and eigenstates of the reduced
density matrix ρA = TrBρ, where ρ = |Ψ〉 〈Ψ| is the
total density matrix. Writing ρA = exp(−H), ξi and
∣

∣ΨA
i

〉

can be regarded as the eigenvalues and eigenstates
of a fictitious hamiltonian H . The ES is the spectrum
associated to H .

It has been shown numerically on a case by case basis
[1, 2] that the counting of the low energy part of the ξi’s
in the ES matches the counting of the edge modes of the

respective FQH state. In the case of a realistic system
whose ground state is close to a model FQH wavefunc-
tion, such as the Coulomb ground state in the lowest
Landau level (LLL) at filling factor ν = 1/3 (close to the
Laughlin state), an entanglement gap can be defined sep-
arating a low energy part matching the model state ξ’s
and a non-universal high energy spectrum [3]. The entan-
glement gap is numerically conjectured to remain finite
in the thermodynamic (TD) limit if the realistic system
is in the same universality class as the model wavefunc-
tion. The ES has also been applied to other systems such
as quantum spin systems [4, 5] or topological insulators
[6–9].

The ES in [1] is related to the previously introduced
[10] FQH geometrical bipartite entanglement entropy
(EE) S = −

∑

i ξi log ξi. References [10, 11] also intro-
duced a different type of EE based on a particle rather
than geometrical cut. In their case, the A part is a subset
of the total particles, while the B part is the remaining
particles. The geometry is left untouched. In a simi-
lar way [1] extended the geometrical bipartite EE to the
GES (geometrical ES), we propose to define a particle ES
(PES) from the particle bipartite EE of [10] and analyze
its behavior for both model and realistic FQH ground
states. For the FQH state on the sphere, the eigenstates
of the PES will preserve the sphere, its radius and the
number of flux quanta, but with a smaller number parti-
cles living on it than in the ground state. Intuitively, this
situation corresponds to nucleating bulk quasihole (qh)
excitations. Fig. 1 sketches this situation. The PES pro-
vides us with both the correct counting of, and the actual,
quasihole eigenstates of a FQH state. We show that the
PES gives correct results even for states without a known
local Hamiltonian, such as the Composite Fermion (CF)
or some Jack wavefunctions. We then extend the PES to
the torus geometry, with similar results.

In this paper, we mostly focus on FQH states on the
sphere with N number of particles under Nφ flux quanta,
and label states by their total angular momentum L and
its projection Lz. The reduced density matrix in the
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bipartite particle partition preserves the symmetry of the
original state. We decompose any one body operator O
into OA + OB where OA (OB) only acts on the A (B)
group of particles. If [O, ρ] = 0 (true for O = L±,z when
the state |Ψ〉 has L = 0), we also have 0 = TrB[OA, ρ] +
TrB[OB, ρ] = [OA, TrBρ] = [OA, ρA] as the trace over the
B degrees of freedom of a commutator operator in the B
part vanishes. We classify the ρA eigenvalues by their
total angular momentum LA and its projection Lz,A and
plot the PES as a function of LA (instead of Lz,A for the
GES) to remove the multiplet degeneracy. Numerically,
the PES involves the diagonalization of larger matrices
than those of the GES.

We start with two well known model wavefunctions,
the ν = 1/3 Laughlin[12] (Fig. 2a) and ν = 1 Moore-
Read (MR) states[13] (Fig. 2c). We chose a fermionic
and a bosonic state to show that the PES properties are
independent of the particle statistics. While all the PES
in this paper are done for a half cut NA = N/2, all results
are valid for any other cut NA ≤ E(N/2) where E(x) is
the integer part of x. In the general case, the counting is
that of min(NA,NB) particles with NΦ flux quanta. We
compare the counting of the LA multiplet in PES with
the one expected for the Laughlin and MR states with
NA particles and a total number of flux quanta NΦ and
observe a perfect match. Moreover, the space spread by
the eigenstates of ρA in a fixed (LzA

, LA) sector coincides
with the one of the qh states in the same sector. We
checked this property up to N = 13 for the Laughlin
state and N = 16 for the MR state. These examples
clearly show that the qh excitations are embedded in the
ground state, and can be extracted through the PES as
the eigenstates of ρA.

We compute the PES for non-model wavefunctions
such as a Coulomb ground state. Fig. 2b shows the ex-
ample of ν = 1/3. The low entanglement-energy part of
the spectrum has the same pattern as the Laughlin state
(for all L sectors unlike the GES on the sphere). While
the PES does not exhibit a full entanglement gap, the
Laughlin levels are separated from the spurious Coulomb
ones by a visible entanglement gap for the first several
levels from LA = 24 to LA = 17. The conformal limit
used on the sphere to define a clear entanglement gap[3]
for the GES, cannot be applied for PES: such a limit
breaks the rotational symmetry and spoils the multiplet
structure.

In certain situations, the PES (in Fig. 2c) resembles
the typical energy spectrum of the true Hamiltonian in
an incompressible phase. For a half cut, in the bosonic
MR state, the relation between NA and NΦ is identical to
the one of the bosonic Laughlin ν = 1/2 state i.e., NΦ =
2(NA−1). The PES for the MR state features a “ground
state” at LA = 0 and a dispersing magneto-roton-like
mode. The square overlap of the PES “ground state” and
the Laughlin state is very high (from 0.9989 for N = 10
to 0.9986 for N = 16). Since large overlap might be
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FIG. 1. Two types of bipartite partition that can be done
on the ground state. The geometrical or orbital cut (right
top corner) probes the edge physics; the particle cut (right
bottom corner) allows access to the bulk qh excitations.

misleading/accidental, we also checked that the PES and
GES of the Moore-Read PES “ground state” resembles
the one of the Laughlin state. While the Laughlin state
can be thought of as a MR qh state, it is surprising that
it appears incredibly close to ground state of the effective
Hamiltonian related to ρA.

The Laughlin and Moore-Read states are single Jack
polynomials uniquely defined by clustering conditions,
whose excitations obey a unique generalized Pauli prin-
ciple. One may question if the PES results are derived
from these rather special properties. To settle this is-
sue, we have considered the Haffnian state[15]. It has
a known Hamiltonian for which it is the unique densest
zero energy ground state but it is not uniquely defined
by clustering conditions. Nevertheless, we checked up to
N = 12 particles that the Haffnian PES directly reveals
all the Haffnian quasihole excitations.

It is easy to analytically show that if a wavefunction is
the zero energy state of a local repulsive Hamiltonian H,
then eigenstates of reduced density matrix with nonzero
eigenvalue (non-infinite entanglement energy) are zero
modes of the same repulsive Hamiltonian but for the
NA number of particles within the initial NΦ number
of fluxes. We assume that the local Hamiltonian con-
tains at most k-body interactions and decompose it in
H = HA + HB + HA+B where HA (resp. HB) acts
only on the A (resp. B) group of particles and HA+B

describes the interaction between the two groups. If
NA < k then the

∣

∣ΨA
i

〉

’s are trivially zero energy states
of HA. If NA ≥ k, since H|Ψ〉 = 0 then we also have
HA |Ψ〉 = 0. Using the Schmidt decomposition, we de-
duce HA

∣

∣ΨA
i

〉

= 0. As a consequence, the number of
non-zero eigenvalues of ρA is bounded by the number of
the zero energy states of the Hamiltonian for NA particles
and NΦ flux quanta. We stress that this proof does not
provide an explanation for our finding that this bound is
saturated for NA ≤ N/2 for all the case studied.

The most salient feature of the PES rests in its abil-
ity to probe the qh physics even for cases where there is
no known Hamiltonian. A simple example is any of the
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FIG. 2. From left to right: (a) ν = 1/3 Laughlin state PES for N = 8 and NA = 4. A small size has been selected for
pedagogical purposes. The counting for the L multiplet is (3, 0, 4, 2, 6, 3, 7, 4, 7, 5, 7, 4, 7, 4, 5, 3, 4, 2, 3, 1, 2, 1, 1, 0, 1). It matches
the one expected for the NA = 4 Laughlin state with 12 added qhs [14].(b) Coulomb ground state at ν = 1/3 for the same
system sizes as (a). The low energy part below the dotted line is similar to the Laughlin state: the multiplet structure is
identical except for one missing high energy state. (c) the bosonic MR state ν = 1 for N = 12 and NA = 6. The dotted line is
the magnetoroton-like mode, it stops at LA = N − 2 while the usual Laughlin magnetoroton mode ends at L = N .

more generic (k, r > 3) clustered states, which, unlike the
Moore-Read and Laughlin states, are not uniquely de-
fined by their clustering properties. Since some of them
are (bosonic or fermionic) Jack polynomials, they can be
decomposed on the n-body basis using the recursion for-
mula of [16], the PES can be computed, and the results
can be compared with the expected counting[14]. We
checked that the counting matches. Moreover, we also
checked that the PES eigenstate space is spanned by the
(k, r) Jack polynomials. All the test we have done show
a perfect match between the two approaches, which sug-
gests that the (k, r) Jack polynomials do have a local
Hamiltonian for which they are the densest zero energy
states.

Other famous examples of wavefunctions for which no
Hamiltonian is known are Jain’s composite fermion (CF)
hierarchical states[17]. They provide appealing explana-
tions of many FQH features, including the series of ex-
perimentally observed fractions p/(2p + 1) and the com-
pressible state at ν = 1/2. The CF approach maps the
original problem of interacting electrons into free com-
posite fermions (CF) - particles bound to flux quanta:

ΨCF = PLLL

∏

i<j

(zi − zj)
n

ΦCF
p (2)

(zi − zj)
n

attaches n flux quanta to the original parti-
cle (the zi are the i’th particle’s complex coordinates).
PLLL is the projection onto the LLL. ΦCF

p corresponds
to the wavefunction of the free CF in p effective Landau
levels, called Λ levels (ΛL). Jain’s wavefunction describ-
ing the ground state at ν = p/(2p + 1) corresponds to
n = 2 and p ΛL filled with CF. Before projection, for
each CF configuration, we associate an effective kinetic
energy assuming the ΛL are separated by an effective cy-
clotron energy. Physical reasoning suggests minimizing
this energy to obtain the excitations above a Jain ground
state. We compare this heuristic view with the exact re-
sults based on the PES of the ν = p/(2p + 1) Jain’s
ground states, as well as with the LLL projected CF ex-

citation wavefunctions which we have built analytically.
We have rigorously implemented Eq. (2), applying the
projection as the last step as opposed to the standard ad-
hoc method used in Monte Carlo calculations [18]. We
first focus on the ν = 2/5 CF wavefunction involving two
ΛL. We evaluate the PES up to N = 10 (Fig. 3e). When
computing PES, keeping only NA particles amounts to
keeping NA CFs. However, the flux attached to the re-
moved particles is now felt by the remaining CFs and the
number of effective flux quanta N∗

Φ = NΦ−2N changes to
N∗

Φ,A = N∗
Φ+2(N−NA). In the naive energy-minimizing

picture, qh states above the ν = 2/5 ground state are
obtained by considering all possible CF configurations
with the lowest total effective kinetic energy (Fig. 3b).
The counting of excitations thus obtained is lower than
the one extracted from the PES. The mismatch with the
PES strongly suggests this physically intuitive reasoning
is wrong.

This heuristic method neglects excitations obtained by
shifting CF’s from one ΛL to a higher energy ΛL. The
correct way to match the PES counting and eigenstates is
to consider all possible configurations in the lowest two
ΛL, irrespective to their effective cyclotron energy, see
Figs.3b,3c. The PES shows that the two ΛL structure
is deeply encoded not only in the CF wavefunction but
also in its quasihole excitations structure. The degen-
eracy counting of qh states is an important ingredient
of the understanding of statistical properties of model
states such as Laughlin or MR. PES provides an easy
and analytically sound way to do the same for the CF
state.

The effective cyclotron energy ΛL is crucial in repro-
ducing the low energy structure of the Coulomb inter-
action, a major achievement of the CF approach, but is
irrelevant for the qh structure of a given CF state. We
note that a similar situation occurs in the unprojected
ν = 2/5 CF wavefunction: this is known to be the exact
densest solution of the hollow core interaction [19] in an
Hilbert space restricted to two Landau levels with a cy-
clotron energy set to zero. The quasihole excitations of
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FIG. 3. Upper part: schematic description of the ν = 2/5 CF
state. Fig. (a) The ground state for 4 particles. In the PES,
one removes 2 particles (2 CFs) - the 2 remaining particles
feel 4 additional flux quanta. Fig. (b) The lowest effective
energy configurations in this situation involve only the LLL.
Figs. (c) and (d) Two other configurations having the same
effective kinetic energy (not part of the lowest effective en-
ergy). Except for accidental degeneracies when the projected
three Λ levels states are already present in two Λ levels states,
only the cases involving two Λ levels such as shown in (c) are
present in the PES. Lower part: PES for the fermionic Jain’s
state ν = 2/5 for N = 8 and NA = 4. The counting matches
the one expected for the NA = 4 CFs with N∗

Φ,A = 10 flux
quanta within two Λ levels.

such an interaction will also have zero energy and involve
only two ΛL.

We checked that the ν = 3/7 Jain’s state for N = 9
has similar properties: its excitations are obtained by
only involving the lowest three ΛL, and the PES gives
the same counting and eigenstates as the projected CF
wavefunctions. We conjecture this feature will generalize
to any states of the series p/(2p + 1). We also analyzed
the bosonic Jain wavefunctions, using single flux attach-
ment in Eq. (2) i.e. n = 1. We reached larger system
sizes (N = 14 for ν = 2/3 and N = 15 for ν = 3/4).
The counting matches that of the projected CF states
involving NA CFs and N∗

Φ,A = N∗
Φ + (N − NA) effective

flux quanta and so for the eigenstates of ρA.

Similar features of the PES hold true when considering
the torus geometry. For the case of the Laughlin state,
the torus GES has been recently studied in [20]. For
non-abelian states, one difficulty of the torus geometry
is the ground state degeneracy, which can be either of
non-abelian or center of motion origin. In this situation,
the definition of the total density matrix is ambiguous.
In [20], the GES was computed per momentum sector, an
approach valid for the Laughlin case studied, but difficult
to extend to non-abelian cases such as Moore-Read. We
find that for the PES, the correct definition of the den-
sity matrix is the incoherent one summing up all sectors:
ρ = (

∑d
i=1

|Ψi〉 〈Ψi|)/d, where |Ψi〉 with i = 1, ..., d forms
an orthogonal basis of the degenerate ground state man-
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FIG. 4. PES of the MR state for N = 8 particles with NA = 4
on the torus geometry. Due to the center of mass degeneracy,
the spectrum repeats after the KA

y = 3 sector. As pointed out
for the sphere geometry, the PES “ground state” is clearly
separated from the excitations and is close to the Laughlin
state both in terms of overlap and its own PES.

ifold (d being the total degeneracy). As defined, ρ com-
mutes with the magnetic translation operators and does
not depend on particular basis choice. We performed
calculations using the translation symmetry along one
direction. Thus our states are only labeled by the Ky

momentum. We checked that the PES for the bosonic
Laughlin state (for N=4 to N=10) and the MR state (for
N=4 to N=14) also unravels the qh physics on the torus,
both in counting and in eigenstates, similar to what is
obtained on the sphere geometry. Fig. 4 displays an ex-
ample of the PES counting for the MR state. At half-cut,
the PES has the same feature that we have mentioned for
Fig. 2: a doublet “ground state” (due to the center of
mass degeneracy) that is close to the Laughlin state and
clearly separated from higher energy states.

In conclusion, we have shown that the PES allows to
extract bulk excitations from a topological ground state.
For the FQH effect, the PES properties are valid for
model states, even in absence of an exact Hamiltonian.
Future works will apply the PES to other topological
phases to prove its generality.
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