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We consider the Kane-Mele model supplemented by a Hubbard U term. The phase diagram is
mapped out using projective auxiliary field quantum Monte Carlo simulations. The quantum spin
liquid of the Hubbard model is robust against weak spin orbit interaction, and is not adiabatically
connected to the spin-Hall insulating state. Beyond a critical value of U > Uc both states are
unstable toward magnetic ordering. In the quantum spin Hall state we study the spin, charge and
single particle dynamics of the helical Luttinger liquid by retaining the Hubbard interaction only
on a ribbon edge. The Hubbard interaction greatly suppresses charge currents along the edge and
promotes edge magnetism, but leaves the single-particle signatures of the helical liquid intact.

PACS numbers: 03.65.Vf,71.10.Pm,71.27.+a,71.30.+h

The Z2 topological band insulator (TBI) [1] arises from
spin-orbit (SO) coupling and is invariant under time re-
versal symmetry. The bulk is insulating and the edge
state, coined helical Luttinger liquid, shows gapless spin
and charge excitations. An explicit realization is given
by the Kane-Mele (KM) Hamiltonian [2] which reduces
to two separate Haldane models [3], with opposite signs
of the Hall conductivity in the two spin sectors. Time re-
versal symmetry protects the edge state against potential
scattering and weak electron-electron interactions [4, 5],
and allows for experimental realizations [6, 7]. Previ-
ous work on correlation effects has essentially followed
two routes: interaction driven topological insulators [8–
12], or (as here) the interplay of spin-orbit coupling and
Coulomb repulsion [13–17]. We present the first quan-
tum Monte Carlo (QMC) results which document (i) a
quantum phase transition between the quantum spin liq-
uid (QSL) phase of [18] and the TBI, (ii) the stability of
the TBI against magnetic ordering, and (iii) the role of
fluctuations in the helical edge state of the TBI.

Our starting point is the KM-Hubbard model on the
honeycomb lattice with Hamiltonian H = HKM +HU ,

HKM = −t
∑
〈i,j〉

c†i cj + iλ
∑
〈〈i,j〉〉

c†i ei,j · σcj ,

HU =
U

2

∑
i

(c†i ci − 1)2 . (1)

The spinor c†i =
(
c†i,↑, c

†
i,↓
)

creates an electron in a Wan-
nier state at site i, 〈i, j〉 means summation over the three
nearest neighbors j = i + δn, (n = 1, 2, 3), 〈〈i, j〉〉 denotes
summation over next-nearest neighbors j = i + δn + δm
such that ei,j = δn × δm/|δn × δm|, see Fig. 1(a), and
σ is the vector of Pauli matrices. At the particle-hole
symmetric point, this model can be investigated with a
variety of QMC algorithms without encountering the in-
famous negative sign problem. We present two sets of
simulations to extract bulk and boundary properties.

Bulk phase diagram — For bulk simulations we use the
projective auxiliary field QMC approach. The ground
state |Ψ0〉 is filtered out of a trial wave function |ΨT〉 with
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FIG. 1: (Color online) (a) Periodic lattice structure of the
KM-Hubbard model with nearest-neighbor hopping t, spin-
orbit coupling λ and Coulomb repulsion U . Arrows indicate
the current direction associated with the spin-orbit term for
one spin species and sublattice. (b) Effective model on a semi-
infinite ribbon with periodic boundaries in the a1 direction,
and Coulomb repulsion U only at the edge sites.

〈ΨT|Ψ0〉 6= 0; a very good choice is the ground state of
the KM model. For an arbitrary observable 〈Ψ0|O|Ψ0〉 =
limΘ→∞〈ΨT|e−ΘH/2Oe−ΘH/2|ΨT〉/〈ΨT|e−ΘH |ΨT〉. The
absence of the negative sign problem at half filling follows
from the fact that after a discrete Hubbard-Stratonovich
transformation of HU and subsequent integration over
the fermionic degrees of freedom, the fermionic deter-
minants in the up and down spin sectors are linked via
complex conjugation such that their product is positive.
We employ an SU(2) invariant Hubbard-Stratonovich
transformation and an imaginary time discretization of
∆τt = 0.1. Projection parameters Θt = 40 prove suf-
ficient for converged (within statistical errors) ground-
state results. For details of the algorithm see [19].

The SO coupling breaks the SU(2) spin symmetry
down to a U(1) symmetry corresponding to spin rota-
tions around the z-axis. The Hubbard interaction pro-
motes transverse, x-y magnetic ordering [15] which can
be tracked by computing

SxyAF =
1
L2

∑
i,j

(−1)i+j〈Ψ0|S+
i S
−
j + S−i S

+
j |Ψ0〉 , (2)

on L × L honeycomb lattices with periodic boundary
conditions. At λ/t = 0.25, this quantity is plotted ver-
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FIG. 2: (Color online) Phase diagram of the KM-Hubbard
model from QMC (see text). Bullets correspond to computed
phase boundaries. The four phases are the semi metal (SM),
the quantum spin liquid (QSL), the topological or quantum
spin-Hall insulator (TBI), and the antiferromagnetic Mott
state (AFMI). Inset: ground-state spin-spin correlation func-
tion [Eq. (2)] for an L× L honeycomb lattice with periodic
boundary conditions and λ/t = 0.25. Lines are fits to the form
a+ b/L+ c/L2. Negative values indicate that the data decay
quicker than 1/L2. Here and in subsequent figures, errorbars
are omitted if smaller than the symbol size.

sus lattice size for various values of U/t in the inset of
Fig. 2. The onset of long-range order occurs in the region
6 < Uc/t < 6.25. Due to the underlying U(1) symmetry
the quantum phase transition between the magnetically
ordered and disordered phases is expected to be in the
3D-XY universality class. Figure 2 shows Uc/t as a func-
tion of λ/t and thus defines the magnetic phase diagram.

Several aspects of Fig. 2 deserve comments: (i) With
the important exception of the QSL phase, the quali-
tative aspects of the magnetic phase diagram were ob-
tained at the mean-field level [15]. The magnetic insta-
bility smoothly converges to the λ/t = 0 result [18]. For
0.025 < λ/t < 0.25 we observe no spin ordering along the
z quantization axis up to U/t = 9. (ii) The U/t = 0 line
corresponds to the KM model and describes a topological
band insulator (TBI) with a single-particle gap set by λ.
(iii) The λ/t = 0 line has been investigated in detail in
Ref. [18]. Up to U/t = 3.5 the semi-metallic (SM) phase
remains stable and magnetic order sets in from U/t = 4.3
onwards. The intermediate phase shows both spin and
single-particle gaps and corresponds to a QSL phase.

To further investigate the phase diagram and in partic-
ular the evolution of the QSL upon switching on the SO
coupling, we have computed the single particle gap, ∆sp,
at the Dirac point K. This quantity is extracted by fit-
ting the tail of the single-particle imaginary time Green
function, G(K, τ) = 〈Ψ0|c†K,σ(τ)cK,σ|Ψ0〉 [see Fig. 3(c)],
to the form Ze−τ∆sp , where Z corresponds to the quasi-
particle residue. The extrapolated (in L) value of ∆sp is

0.00

0.05

0.10

0.15

0.20

0.25

0.00 0.02 0.04

∆
s
p
/t

λ/t

U/t = 4
U/t = 2

(a)

λc

0.0

0.2

0.4

0.6

0.8

1.0

2 3 4 5 6

U/t

λ/t = 0.1

(b)

Uc

10
-4

10
-3

10
-2

10
-1

10
0

0 2 4 6 8 10

G
(K

,τ
)

τt

(c)

L = 15

L = 3

0.0

0.2

0.4

0.6

0.8

0.0 0.1 0.2 0.3

∆sp/t

1/L

FIG. 3: (Color online) (a),(b) Single particle gap along dif-
ferent cuts in Fig. 2 (λc/t ' 0.03, Uc/t ' 4.9). (c) Raw data
and size extrapolation (inset) at U/t = 4, λ/t = 0.03.

plotted in Figs. 3(a),(b) along different cuts of the phase
diagram. Starting in the SM phase, at U/t = 2, ∆sp ∝ λ
as for the U/t = 0 case and characteristic of the TBI
state [2]. In contrast, in the QSL phase at U/t = 4, ∆sp

initially decreases with increasing λ but grows again for
λ/t & 0.03. We interpret this cusp feature as a signature
of a quantum phase transition between the QSL state
and the TBI at λc/t ' 0.03. The data support the van-
ishing of the single-particle gap at λc/t [25]. Figure 3(b)
shows that the magnetic transition as a function of U/t at
fixed λ/t = 0.1 is equally apparent; ∆sp smoothly evolves
from its U/t = 0 value and exhibits a cusp feature at
Uc/t ' 4.9. Magnetic order breaks time reversal sym-
metry and lifts the topological protection, so that ∆sp

does not have to close at Uc. This evolution of the gap
can be qualitatively reproduced at the mean-field level.
From the single-particle gap, we identify four distinct
phases: (i) a TBI phase, where ∆sp evolves smoothly to
its U/t = 0 value, (ii) a magnetically ordered MI, (iii) a
SM line and (iv) a QSL phase.

Edge state in the TBI phase. — Edge states are a hall-
mark feature of TBIs. A detailed understanding of cor-
relation effects in these one-dimensional liquids is crucial
for theory and experiment. To study the helical Lut-
tinger liquid formed at the edge of the Z2 TBI, we con-
sider the ribbon topology of Fig. 1(b). For U ≥ Uc, time
reversal symmetry is broken spontaneously and scatter-
ing between the left spin-down, and right spin-up movers
of the helical liquid is allowed, thus opening a gap in
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FIG. 4: (Color online) Transverse spin correlations along the
edge of the ribbon. Results are for L = 16, βt = 20 (dashed
lines) and βt = 40 (solid lines). Lines are guides to the eye.

the edge state and destroying the TBI state. As argued
above, at U < Uc the bulk is adiabatically linked to the
U/t = 0 line. Since furthermore the helical liquid is ex-
ponentially localized on the boundary (as readily seen in
the KM model), we retain the Hubbard interaction only
on one zig-zag edge of the ribbon [cf. Fig. 1(b)]. With
this ansatz, the bulk plays the role of a fermionic bath
which can be integrated out at the expense of a Gaussian
integral. This yields an effective one-dimensional action,

S =−
∑
σ,r,r′

∫ β

0

dτ
∫ β

0

dτ ′c†r,σG
−1
0,σ(r − r′)cr′,σ

+ U
∑
r

∫ β

0

[
nr,↑(τ)− 1

2

] [
nr,↓(τ)− 1

2

]
, (3)

where r is an edge site index, and G0,σ(r − r′) is the
free Green function of the KM model on the ribbon
topology. We can solve the action (3) exactly using the
weak-coupling expansion continuous-time QMC method
[20, 21], on arbitrarily wide L×L′ ribbons (here L′ = 64).
The validity of this effective model at U < Uc has been
verified by QMC calculations for the full model (1) on
narrow ribbons. We take λ/t = 0.25 in the following.

At U/t = 0 and half filling, the dispersion relation
of the helical liquid satisfies εq,↑ = −εq,↓, and the edge
state is unstable towards transverse ferromagnetic order.
Figure 4 shows the development of substantial spin-spin
correlations in the transverse direction with decreasing
temperature and increasing U/t. This corresponds to
the dominant correlation function.

We calculate dynamic structure factors along the edge,

O(q, ω) =
1
Z

∑
n,m

e−βEn |〈m|O(q)|n〉|2δ(Em−E0−ω). (4)

For charge, N(q, ω), O(q) = N(q) = 1√
L

∑
r eiqrnr,

and for spin, Sα(q, ω), O(q) = Sα(q) = 1√
L

∑
r eiqrSαr .

Single-particle dynamics are deduced from the single-
particle Green function via the spectral functions
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FIG. 5: (Color online) Dynamic spectral functions in the (a)
charge sector, (b) spin-resolved one-particle sector, and (c,d)
spin sector, measured along the edge. The parameters are
U/t = 2, L = 24, L′ = 64, λ/t = 0.25 and βt = 40. Dotted
lines show the velocities of the free helical liquid (U/t = 0).

Aσ(q, ω) = −π−1ImGσ(q, ω), where by time reversal
symmetry we have A↑(q, ω) = A↓(−q, ω).

Figure 5 shows these dynamic quantities at U/t = 2.
The dominant features of the single-particle spectral
function, see Fig. 5(b), follow the non-interacting system:
within the bulk band gap, gapless single-particle excita-
tions emerge with a velocity tied to the z-component of
the spin. For U/t = 0, the particle-hole spectra can be
deduced from the single-particle dynamics by computing
the bubble. Within this framework the dynamic charge
structure factor as well as the z-component of the dy-
namic spin structure factor are identical. Both quanti-
ties conserve the z-component of spin, such that at low
energies (i.e. below the bulk gap) only particle-hole ex-
citations within the left, or right movers are allowed.
This produces a linear mode around q = 0 as observed
in Figs. 5(a),(d). At higher energies, particle-hole exci-
tations involving bulk states become apparent. Upon
inspection of Figs. 5(a),(d) one sees that the support
of both quantities is very similar. However, the spec-
tral weight of the low-lying charge modes is greatly sup-
pressed in comparison to the longitudinal spin mode. The
transverse spin susceptibility involves a spin-flip process
and hence excitations between the left and right disper-
sion relations. This produces a continuum of excitations
in the long-wavelength limit [cf. Fig. 5(c)].

At large U/t = 5 (Fig. 6) we observe a strong de-
pletion of spectral weight in the low-lying charge modes
[Fig. 6(a)], which leads to reduction of the Drude weight
by one order of magnitude. In contrast, despite strong
correlations, the single-particle spectrum [Fig. 6(b)] still
exhibits the typical signature of the helical edge state.
The growth of the equal-time transverse ferromagnetic
correlations as a function of U/t (Fig. 4) leads to a piling
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FIG. 6: (Color online) Same as in Fig. 5 but for U/t = 5.

up of low-lying spectral weight in Sx(q, ω) for q → 0.
In the TBI phase, where the effective model of Eq. (3)

is valid, one can argue that the charge, longitudinal spin
and Fermi velocities should be rather insensitive to the
value of U/t since they are inherited from the bulk. This
is confirmed by our numerical results. Correlation effects
become manifest in a very strong variation of matrix ele-
ments in the dynamic quantities of Eq. (4). In particular,
the depletion of low-lying spectral weight in the charge
sector suppresses charge transport along the edge. In
contrast, spin fluctuations as well as the signatures of
the helical liquid in the single particle spectra persist.

Summary. We have derived the bulk phase diagram
of the Kane-Mele Hubbard model from QMC [26]. We
established the exact location of the previously predicted
magnetic transition at large U/t [15], and that the non-
magnetic region is dominated by the TBI. The single-
particle gap provides strong evidence for a quantum
phase transition at finite SO coupling between the QSL
and the TBI. Neither of these states can be character-
ized by a local order parameter, and a detailed under-
standing of the transition represents a fascinating open
issue. Applying QMC to an effective model of the heli-
cal edge state, we have studied the impact of electronic
correlations by calculating one and two-particle dynam-
ics in the TBI phase. Correlation effects lead to an or-
der of magnitude reduction of low-lying long wave length
charge fluctuations, and thereby charge transport, and
promote transverse magnetic fluctuations. The single-
particle spectrum retains its weak-coupling features.
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