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The resources required to characterise the dynamics of engineered quantum systems—such as quantum com-
puters and quantum sensors—grow exponentially with system size. Here we adapt techniques from compressive
sensing to exponentially reduce the experimental configurations required for quantum process tomography. Our
method is applicable to dynamical processes that are known to be nearly-sparse in a certain basis and it can
be implemented using only single-body preparations and measurements. We perform efficient, high-fidelity
estimation of process matrices on an experiment attempting to implement a photonic two-qubit logic-gate. The
data base is obtained under various decoherence strengths. We find that our technique is both accurate and noise
robust, thus removing a key roadblock to the development and scaling of quantum technologies.

Understanding and controlling the world at the nanoscale—
be it in biological, chemical or physical phenomena—requires
quantum mechanics. It is therefore essential to character-
ize and monitor realistic complex quantum systems that in-
evitably interact with typically uncontrollable environments.
One of the most general descriptions of open quantum sys-
tem dynamics is a quantum map—typically represented by
a process matrix [1]. Methods to identify the process ma-
trix are collectively known as quantum process tomography
(QPT) [1, 2]. For a d-dimensional quantum system, they re-
quireO(d4) experimental configurations: combinations of in-
put states, on which the process acts, and a set of output ob-
servables. For a system of n of the simplest quantum objects,
namely qubits —two-level quantum systems—d=2n. The re-
quired physical resources hence scale exponentially with sys-
tem size. In principle, a single generalized measurement is
sufficient for full process tomography in a extended Hilbert
space relying on highly nonlocal many-body measurements
that are physically unavailable [3]. Recently, a number of al-
ternative methods have been developed for efficient and se-
lective estimation of quantum processes [4]. However, full
characterization of quantum dynamics of comparably small
systems, such as a recently demonstrated 8-qubit ion trap [5],
would still require over a billion experimental configurations,
clearly a practical impossibility. So far, process tomography
has therefore been limited by experimental, and—to a lesser
extent—by off-line computational resources, to systems of 2
and 3 qubits [6–8].

Here we adapt techniques from compressive sensing (CS)
to develop an experimentally efficient method for QPT. It
requires only O(s log d) configurations if the process ma-
trix is s-compressible in some known basis, i.e., it is nearly
sparse in that it can be well approximated by an s-sparse
process matrix. This is usually the case, because engineered
quantum systems aim to implement a unitary process which
is maximally-sparse in its eigenbasis. In practice, as ob-
served in QPT experiments in liquid-state NMR [9], photonics
[6, 10, 11], ion traps [12], and superconducting circuits [7], a

near-unitary process will still be nearly-sparse in this basis,
and still compressible. The near sparsity emanates from deco-
herence originating in few dominant system-environment in-
teractions. This is more apparent for weakly decohering sys-
tems [13].

We experimentally demonstrate our algorithm by estimat-
ing the 240 real parameters of the process matrix of a canon-
ical photonic two-qubit gate, Fig. 1, from a reduced number
of configurations. For example, from just 18 and 32 config-
urations, we obtain fidelities of 94% and 97% with process
matrices obtained from an overcomplete set of all 576 avail-
able configurations.

Compressive sensing provides methods for compression of
information carried by a large-size signal into a significantly
smaller one along with efficient convex optimization algo-
rithms to decipher this information [14, 15]. Originally de-
veloped to exploit compressible features of natural audio and
video signals, applications of compressive sensing have re-
cently found their way to quantum tomography: Simulations
of compressive sensing for QPT [16], application to ghost-
imaging [17], and quantum state tomography for low-rank
density matrices [18]. The latter provides a quadratic reduc-
tion of physical resources compared to standard state tomog-
raphy, i.e., for a density matrix of rank r, O(rd log2 d) vs.
standard d2 settings, and it also has the main advantage that
rank is basis independent. Very recently, the low-rank matrix
completion technique has been used in an efficient method of
quantum state tomography that in particular can be applied to
one-dimensional physical systems whose states are well ap-
proximated by matrix product states [19].

Under reasonable assumptions, a quantum map on a d-
dimensional space has the general representation [1],

S(ρ)=
d2∑

α,β=1

χαβΓαρΓ†
β (1)

where χ, the d2 × d2 process matrix, is positive semidefinite,
χ≥0, and trace preserving,

∑
α,β χαβΓ†

βΓα=Id, with {Γα}
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an orthonormal matrix basis set, Tr(Γ†
βΓα)=δαβ . Note that

sparsity is a property of the map representation not the map
itself. Data is collected by preparing an ensemble of identi-
cal systems in one of the states {ρ1, ..., ρk}, inputting them
to the process χ, and then measuring an observable M from
the set {M1, ...,M`}. For a pair (ρ,M ), the outcome will
be yM,ρ=Tr(S(ρ)M). If the experiment is repeated for all
configurations, i.e., (ρi,Mi), i=1, . . . ,m=k`, the relation be-
tween the vector of outcomes y=[yM1,ρ1 , . . . , yMm,ρm

]T and
the true process matrix, denoted by χ0, can be represented by
a linear map y=Φ~χ0, where ~χ0 is the vectorized form of the
process matrix χ0 and Φ is an m×d4 matrix of coefficients of
the form Tr(ΓαρiΓ

†
βMi)/

√
m.

In general, estimating a sparse process matrix with an un-
known sparsity pattern from an underdetermined set of linear
equations (m<d4) would seem highly unlikely. Compressive
sensing, however, tells us that this can be done by solving for
χ from the convex optimization problem:

minimize ‖~χ‖`1 subject to ‖y − Φ~χ‖`2 ≤ ε, (2)

and positive-semidefinite and trace-preserving conditions as
defined above. The parameter ε quantifies the level of uncer-
tainty in the measurements, that is, we observe y=Φχ0+w
with ‖w‖`2 ≤ ε. From [15, 21], recovery via (2) is ensured if
(i) the matrix Φ satisfies the restricted isometry property:

1− δs ≤
‖Φ~χ1(s)− Φ~χ2(s)‖2`2
‖~χ1(s)− ~χ2(s)‖2`2

≤ 1 + δs (3)

for all s-sparse χ1(s), χ2(s) process matrices; (ii) the isome-
try constant δ2s<

√
2−1 and (iii) the number of configurations

m ≥ C0s log(d4/s). Under these conditions, the solution χ?

of (2) satisfies,

‖~χ? − ~χ0‖`2 ≤
C1√
s
‖~χ0(s)− ~χ0‖`1 + C2ε (4)

where χ0(s) is the best s-sparse approximation of χ0 and
C0, C1, C2 are constants on the order of O(δs), see [20]. The
restricted isometry property states that two s-sparse process
matrices χ1(s) and χ2(s) can be distinguished if their relative
distance is nearly preserved after the measurements, i.e., un-
der transformation by Φ. If the measurements are noise free,
ε=0, and the process matrix is actually s-sparse, χ0=χ0(s),
then the right hand side of (4) is zero leading to perfect re-
covery, χ?=χ0. Otherwise the solution tends to the best s-
sparse approximation of the process matrix plus the additional
term due to measurement error ε. If for an n-qubit QPT with
d=2n the conditions of the above analysis are satisfied, then
the number of experimental configurations m scales linearly
with sn, specifically, m≥C0s(4n log 2− log s)=O(sn). In
[20], using the measure concentration properties of random
matrices, following the arguments in [15, 21], we show that if
Φ is constructed from random input states {ρi}, and random
observables {Mi}, then the restricted isometry in (3) holds
with high probability. Also a test is presented to certify the
sparsity assumption.

a)

b)

QWP

State Preparation Gate Tomography

HWP PBS APD

FIG. 1: Experimental scheme. Two-photon inputs were prepared
with either (a) a high-rate, non-scalable, two-photon source or (b) a
low-rate, scalable, four-photon source. The qubits are encoded us-
ing polarisation, as described in the text. The quantum process is a
photonic entangling-gate. A measurement configuration is defined
as some combination of state preparation and tomography, imple-
mented here with quarter- and half- waveplates (QWP, HWP), polar-
izers (PBS), and photon detectors (APD). For details see [20].
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FIG. 2: Process fidelities vs. number of input-output configurations,
for each compressive QPT estimate, χm, in the gate-basis of the ideal
CZ-gate for the lowest measured noise level, P=0.91. The dashed
line shows the fidelity of the full estimateF(UCZ, χ576)=0.89 (black
diamond). Error bars are obtained by solving (2) for 50 different
random combinations of m inputs and observables.

A nearly-sparse process matrix can thus be encoded into
an exponentially smaller number of measurement outcomes,
which can be recovered to within the bounds of (4) by
solving (2). We now test our algorithm experimentally
against standard QPT on a two-qubit gate under a range
of decoherence—and thus sparsity—conditions. We used
a photonic controlled-phase, CZ, gate, Fig. 1 where the
qubits are encoded in orthogonal polarization states of single
photons (|H〉, horizontal, and |V 〉, vertical). We performed
full process tomography [6, 10, 11] of the gate with both
2-photon and 4-photon arrangements, preparing 16 pair-wise
combinations of the 4 input states {|H〉, |V 〉, |D〉, |R〉}
and, for each input, measuring 36 two-qubit combina-
tions of the observables {|H〉, |V 〉, |D〉, |A〉, |R〉, |L〉},
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FIG. 3: Real and imaginary process matrix elements in the Pauli basis for the CQPT estimate χ32, 32 configurations (left) vs. full data estimate
χ576, 576 configurations (right) for A) a low noise, 2-photon experiment, P=0.91, and B) a high-noise, 4-photon experiment, P=0.62. The
CQPT reconstructions have fidelities, F(χ576, χ32), of 95% and 85% respectively. The CQPT estimation accuracy is excellent for low noise,
and reliable even for high noise, see [20] for more details.

where |D〉=(|H〉+|V 〉)/
√

2, |A〉=(|H〉−|V 〉)/
√

2,
|R〉=(|H〉+i|V 〉/

√
2, and |L〉=(|H〉−i|V 〉/

√
2. These

576 input-output configurations represent an overcomplete
set which allows the best possible estimate of the quantum
process, denoted χ576 [6].

The compressed quantum process tomography (CQPT) es-
timate of the 16×16 process matrix, denoted χm, is obtained
by solving (2) with y=Cselp and Φ=CselG where p is the
576 × 1 experimental probabilities corresponding to each of
the 576 configurations, G is the 576×256 matrix obtained
from all the configurations and the basis set [Γα in (1)],and
Csel is the m×576 matrix corresponding to taking a selection
ofm ≤ 576 of all possible configurations. The basis set is ob-
tained from the singular-value decomposition of the ideal CZ-
gate: the process matrix in this basis is maximally sparse with
a single non-zero 1,1-element which equals 4. The measure-
ment error bound ε in (2) is chosen to be just slightly larger
than

√
mσ, where σ is the minimum feasible root-mean-

square level obtained from (2) using all configurations, i.e.,
with Csel=I576. We quantify decoherence using the process
purity, P=Tr(χ2

m/d
2), which varies from 0 for a completely

decohering channel, to 1 for a unitary process: in our exper-
iment we used six decoherence levels (see [20] for details),
giving purities of {0.62, 0.74, 0.77, 0.79, 0.86, 0.91} ± 0.01.

Figure 2 shows, for the lowest decoherence level, the pro-
cess fidelities [6] versus the number of randomly-selected con-
figurations, m. Each process matrix, {χm}, is obtained by
solving (2). We use the fidelity between (i) the compressive
measurement and the ideal, F(UCZ, χm); and (ii) the com-
pressed and optimal measurements, F(χ576, χm). Note that
asm increases the fidelity with the ideal converges to the value
of 0.89 obtained from χ576; likewise, the fidelity with the full
estimate converges to unity. Similar plots exist for every level
of decoherence, with fidelities reduced accordingly.

We have so far used random selections of probabilities from

the full data set, which allows us a comprehensive test of com-
pressive sensing theory. Experiments, however, don’t yield
probabilities but physical quantities, e.g. count rates. To date,
algorithms for more efficient state [18] or process tomography
have assumed probabilities as a starting point. Since normal-
ization is an issue to some extent in all physical architectures,
it will be necessary to investigate the robustness and scalabil-
ity of algorithms for real-world experiments.

For our photonic two-qubit gate, which is lossy and intrin-
sically probabilistic, the probabilities were obtained by nor-
malising counts using a full basis set of observables extracted
from all measurements, I576. Having sufficient configura-
tions to allow for normalisation necessarily imposes limits on
CQPT efficiency: for low m, we are restricted in how random
our selections can be. (Details and some permissible configu-
rations in [20]). As an example, Fig. 3 shows process matri-
ces reconstructed via CQPT from just one of these configura-
tions compared to the respective full data estimates. We used
32 combinations of the 16 inputs {|H〉, |V 〉, |D〉, |R〉} and
2 observables {|R〉|I〉, |I〉|R〉}, where I is the identity. The
agreement is excellent as one can see from the fidelities and
the correct reproduction of imaginary elements—which are
ideally zero. Another striking feature is that we obtain highly
faithful reconstructions of a non-local process using only lo-
cal measurements [3].

A further crucial test is whether CQPT enables us to locate
errors and implement necessary corrections: a common exam-
ple is identifying local rotations that move the process closer
to the ideal. By optimising F(UCZ, χ32), we calculated local
corrections to χ32; applying them to the full estimate χ576,
F(UCZ, χ576) improved, on average, over all decoherence lev-
els, by 4.1%. This is very close to the average 4.9% improve-
ment obtained by calculating and applying local corrections
directly to χ576. Even a low-configuration CQPT estimate of
a noisy process therefore enables improvements.
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FIG. 4: Absolute values of the 256 process matrix elements of χ576

for our lowest and highest noise level, sorted by relative magnitude
(with respect to the 1,1-element) in the CZ basis (top) and the Pauli
basis (bottom). The error threshold, which indicates the required
number of configurations, is shown in grey.

That high-fidelity estimates are obtained by CQPT can be
understood from the error bound (4) which shows that the
CQPT estimate tends towards the best s-sparse approximation
of the true process, in this case our best estimate χ576. Fig. 4
shows the process matrix elements, sorted by relative magni-
tude, for low and high noise levels, in two basis sets. The s-
sparse approximation levels indicated in (4) are reached where
the matrix elements drop below the error threshold (0.01–
0.02). For the corresponding m, we can therefore expect a
successful, high-fidelity, CQPT reconstruction. In the CZ-
basis, the plots show that for low noise, s∈[20, 30], which
correlates well with the fidelities in Fig. 2; for high noise
s∈[40, 60]. Although the process matrix is still somewhat
sparse in the Pauli-basis (Fig. 3), the corresponding plots in
Fig. 4 indicate that ∼100 configurations are needed to obtain
an estimate of comparable quality. Furthermore, the sorted
magnitude values in the CZ basis decay exponentially, which
is sufficient to declare the process matrix s-compressible, e.g.,
[22, 23]. Intriguingly, this exponential decay is a signature
of model-based compressive sensing where the scaling goes
from m=O(s log(d/s)) to m=O(s) [23]. This demands fur-
ther investigation, since it appears that QPT fits this frame-
work, particularly when the process matrix is expanded in the
ideal basis corresponding to the unitary design goal.

Our experimental results are supported numerically by sim-
ulations of a 2-qubit process as well as simulation studies for
3 and 4 qubit systems which show the same type of compress-
ibility, see [20]. Applying CQPT to larger systems will re-
quire careful attention to classical post-processing which—as
in QPT—scales exponentially. The standard software we used
here (see [20]), can easily handle 2 and 3 qubit CQPT sys-
tems. For larger systems, more specialized software can in-
crease speed by orders of magnitude, e.g., [22].

A number of research directions arise from this work: in-

corporating knowledge of model structure properties; tight-
ening the bounds on scaling laws; understanding how near-
sparsity s and rank r vary with system dimension, d; pur-
suing highly efficient convex-computational algorithms; and
selection of optimal configurations. Compressive tomogra-
phy techniques can also be applied to quantum metrology
and Hamiltonian parameter estimation: for example, estimat-
ing selective properties of biological or chemical interest in
molecular systems and nanostructures with typically sparse
Hamiltonians [24].
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