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We study theoretically the RKKY interaction between magnetic impurities on the surface of three-

dimensional topological insulators, mediated by the helical Dirac electrons. Exact analytical expression shows

that the RKKY interaction consists of the Heisenberg-like, Ising-like and Dzyaloshinskii-Moriya (DM)-like

terms. It provides us a new way to control surface magnetism electrically. The gap opened by doped magnetic

ions can lead to a short-range Bloembergen-Rowland interaction. The competition among the Heisenberg, Ising

and DM terms leads to rich spin configurations and anomalous Hall effect on different lattices.
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Introduction.— All-electrical quantum manipulation of the

spin degree of freedom of electrons and/or magnetic ions is

a central issue in the fields of spintronics and quantum infor-

mation processing. Spin-orbit interaction in solids is an inher-

ent relativistic effect and can be tuned by an external electric

field, i.e., breaking of spatial inversion symmetry. Recent dis-

covery demonstrates that the spin-orbit interactions can invert

the conduction and valence bands, and lead to a new state of

matter named topological insulator (TI) in a number of ma-

terials, such as a two-dimensional (2D) HgTe quantum well

[1–3], and three-dimensional (3D) BixSb1−x [4, 5], Bi2Se3

and Bi2Te3 [6–8]. These TIs possess an insulating bulk and

metallic edge or surface states that are protected by the time

reversal symmetry (TRS). The energy spectrum of the sur-

face states shows a single massless Dirac cone at Γ point of

the Brillouin zone, which was experimentally verified using

the angle-resolved photoemission spectroscopy (ARPES) ex-

periments [5, 8, 9]. Electrical tuning of the Fermi energy in

3D TI materials is reported by changing the backgate voltage

[10]. Although the energy spectrum of the surface states of

3D TI is very similar with that of graphene, but there is an im-

portant difference between graphene and TIs. The helicity of

graphene is not defined in regard to the real spin of the elec-

tron but to the two sublattices of graphene. Contrastingly, the

helicity of the surface state of 3D TI is defined in regard to

the electron spin. The helical surface state is spin-momentum

locked and certainly leads to spin relevant effects, e.g., spin

filtering and giant magnetoresistance, the Ruderman-Kittel-

Kasuya-Yosida (RKKY) interaction [11, 12].

The RKKY interaction is an indirect exchange interaction

between magnetic ions mediated by itinerant electrons. This

long-range spin-spin interaction plays a crucial role in mag-

netic metals and diluted magnetic semiconductor. One can ex-

pect that the mediated helical electrons on the surface of a 3D

TI must lead to some unusual properties of the RKKY interac-

tion. Importantly, introducing of many magnetic impurities in

3D TIs breaks the TRS and opens a gap in the Dirac spectrum

of the surface states [13]. This transition makes the massless

Dirac electrons become the massive ones and changes the spin

orientation of the surface states near the Dirac point. The char-

acteristics of the itinerant electron states, e.g., chirality and en-

ergy dispersion, determine the spin-spin interaction between

magnetic impurities. However, the back action of magnetic

impurities also affects the electron states, e.g., the gap open-

ing, and consequently alters the spin-spin interaction. Recent

experiments demonstrate a strong warping effect in the energy

spectrum of the surface states of the 3D TIs, e.g., Bi2Se3 and

Bi2Te3 [8, 9, 14]. The warping effect becomes more signifi-

cant at high Fermi energy, and certainly influences the surface

magnetism of 3D TIs.

In this Letter, we draw attention to the surface magnetism

of a 3D TI, utilizing the RKKY interaction mediated by heli-

cal massless or massive Dirac electrons. From the analytical

expression of the RKKY interaction, we demonstrate theoret-

ically that one can implement various quantum spin models

by changing applied gate voltage, e.g., the Dzyaloshinskii-

Moriya (DM) model, the XXZ model and the XZ model.

The gap opening caused by the magnetic impurities results

in an additional Ising term in the RKKY interaction and leads

to a short-range correlation, i.e., the Bloembergen-Rowland

(BR) interaction, when the Fermi energy is located in the gap.

The warping effect behaves like an anisotropic momentum-

dependent effective magnetic field perpendicular to the sur-

face, leading to an crystallographic orientation-dependent

RKKY interaction. The local spins can be arranged in vari-

ous lattices, e.g., triangular and square lattices formed by the

STM technique, the pinning effect, or the Coulomb interac-

tion. The interplay between the unique property of the RKKY

interaction and the geometry of spin lattice results in the rich

spin configurations of the ground states of spin systems, e.g.,

the ferromagnetic, antiferromagnetic and spin frustration on

the surface of a 3D TI.

Hamiltonian and RKKY interaction.—First we consider two

magnetic impurities Si (i = 1,2) located at Ri mediated by

massless Dirac electrons on the surface of 3D TI (see Fig.

1(a)). The Hamiltonian of the system is H = H0 + H int
i ,

where the massless Dirac electron Hamiltonian [15] H0 =
h̄vF (kxσy − kyσx) + λ

2

(
k3
+ + k3

−
)

σz and the s-d interaction

between the magnetic impurities and the electrons H int
i =

−J
(−→

σ ·S
)

δ (r−Ri). k is in-plane momentum of electron,
−→
σ = (σx,σy,σz) is the Pauli matrix denoting the real spin of

electron. vF is the Fermi velocity of the surface states, which
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FIG. 1: (color online). (a) Schematic of two local spins on the surface

of TI, with electrically controllable RKKY interaction. The 3D topo-

logical thin film is epitaxially grown on SrTiO3 substrates [10]. (b)

The massless and massive surface state with spin orientation. The 2∆

denotes the gap caused by breaking of TRS. (c) The warping effect

of Bi2X3 class TI with spin orientation.

is given by 6.2× 105ms−1 for Bi2Se3 [6] and 3.9× 105ms−1

for Bi2Te3 [15]. ẑ is a unit vector along the normal direction

of the surface. λ is the magnitude of the hexagonal warping

term. J denotes the strength of the s-d exchange interaction,

which is around 2 ∽ 13 eV
◦
A

2

[11].

We first neglect the warping effect, the Green’s

function in real space can be obtained as Gε (±R) =

− ε

4h̄2v2
F

[
iH

(1)
0

(
Rε

h̄vF

)
∓ ẑ ·

(−→
σ ×nR

)
H

(1)
1

(
Rε

h̄vF

)]
, where

H
(1)
ν (x) is the ν-order Hankel function of the

first kind, and R ≡ RnR. In the loop approx-

imation we find the RKKY interaction between

two magnetic impurities in the form of HRKKY
1,2 =

− 2
π

Im
∫

εF
−∞

dεTr[H int
1 Gε (R;ε + i0+)H int

2 Gε (−R;ε + i0+)],
where εF is the Fermi energy, and Tr means a partial trace

over the spin degree of freedom of itinerant Dirac electrons.

Then the RKKY interaction can be written as

HRKKY
1,2 = F1 (R,εF)S1·S2 + F2 (R,εF) (S1×S2)y

+F3 (R,εF )S
y
1S

y
2, (1)

where the range functions are

F1 (R,εF) =
J2

4π
3
2 h̄vF R3

[G2,1
2,4

(
R2ε2

F

h̄2v2
F

| 1,2
3
2
, 5

2
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2

)

−G
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2,4

(
R2ε2

F

h̄2v2
F

| 1,2
3
2
, 3

2
,0, 3

2

)
+

√
π

2
],

F2 (R,εF) =
J2

4π
3
2 h̄vF R3

[G2,1
2,4

(
R2ε2

F

h̄2v2
F

| 2, 3
2
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)
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(
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F
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F
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],

F3 (R,εF ) =
J2

2π
3
2 h̄vFR3

[G2,1
2,4

(
R2ε2

F

h̄2v2
F

| 1,2
3
2
, 3

2
,0, 3

2

)
− 3
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8
].

Here G
m,n
p,q is the Meijer’s G-function [16]. The RKKY in-

teraction consists of three terms: the Heisenberg-like term,

the DM-like term and the Ising-like term, displaying differ-

ent range functions. The competition among these three terms

can implement various spin models.

All three range functions show damped oscillation as the

distance R increases, this behavior indicates that this RKKY

interaction is a long-range correlation between two spins (see

Fig. 2(a)). Utilizing the asymptotic form of Hankel functions,

the long-range asymptotic behavior of the RKKY interaction,

i.e., kFR ≫ 1, is

H
RKKY (asym)
1,2 ≈ J2εF

2π2h̄2v2
F R2

[sin

(
2RεF

h̄vF

)(
S1·S2 −S

y
1S

y
2

)

−cos

(
2RεF

h̄vF

)
(S1×S2)y ]. (2)

From Eq. (2), the oscillatory behavior of RKKY interaction

in a n-type TI (εF > 0) can be clearly seen and dominates at

large εF R. The long-range behaviors of the Heisenberg term

and Ising term show a spatial dependence as 1/R2, which is

the same as in a conventional 2D electron gas, but in con-

trast with that in graphene where the spatial dependence is

1/R3. Interestingly, one can see that the range functions for

the Heisenberg and Ising terms have almost the same magni-

tude but opposite sign. It means that the Ising term always

cancels the z-component of the Heisenberg term. By prop-

erly adjusting the distance R using the STM technique and/or

the Fermi energy εF (see Fig. 2(b)), one can even diminish

the Heisenberg and Ising terms and obtain a RKKY inter-

action containing the DM interaction alone. The RKKY in-

teraction becomes HRKKY
1,2 (R,εc

F) ≃ F2 (R,εc
F )(S1×S2)y, i.e.,

a pure DM-like spin model. The long-range asymptotic

form of the DM interaction also decreases as 1/R2, but with

±π/2 phase shift compared to other two terms. By set-

ting εF = 0, i.e., the intrinsic 3D TI case, the DM term

vanishes, the RKKY interaction can be simply written as

HRKKY
1,2 = J2

16π h̄vF R3

(
2Sx

1Sx
2 + 2Sz

1Sz
2 −S

y
1S

y
2

)
, a XXZ-like spin

model. Notice that the range function monotonically decreas-

ing as 1/R3 (see the inset in Fig. 2(a)) in this case, the same

as in graphene.

The gap opening and warping effects.—Next we study the

gap opening effect caused by magnetic impurities in the TIs.

The surface states are described by a massive Dirac Hamilto-

nian H
(gap)
0 = h̄vF (kxσy − kyσx)+ ∆σz, where 2∆ denotes the

gap caused by breaking TRS (see Fig. 1(b)). This Hamilto-

nian means that the magnetic impurities behave as a Zeeman

term which lifts the degeneracy of Dirac point. Similarly, we

get the RKKY interaction including the gap opening effect,

H
RKKY (gap)
1,2 = F

g
1 (R,εF)S1·S2 + F

g
2 (R,εF) (S1×S2)y

+F
g
3 (R,εF )S

y
1S

y
2 + F

g
4 (R,εF )Sz

1Sz
2. (3)
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FIG. 2: (color online). The range function of RKKY interaction

as function of the distance between localized spins R (Fig.2(a,c))

or the Fermi energy εF (Fig.2(b,d)). The inset shows the intrin-

sic case (εF = 0). Fig. 2(a),(b) depict the RKKY interaction with

massless Dirac electrons, and Fig. 2(c),(d) the RKKY interaction

with massive electrons (∆ = 25 meV)[13]. Fig. 2(e) is the range

functions of BR interaction, and Fig. 2(f) the absolute values of BR

range functions with logarithmic coordinates. The blue (solid) lines

are the range function F1(R,εF), the red (long dashed) lines are the

F2(R,εF), the green (short dashed) ones are F3(R,εF), and the cyan

(dash dotted) ones are F4(R,εF). We choose εF = 100 meV for Fig.

2(a,c), R = 30 nm for Fig. 2(b,d) and εF = −18 meV for Fig. 2(e,f).

The zero point of energy is at the midpoint of the energy gap caused

by breaking TRS in Fig. 2(c)-(f).

There are two dominant differences between the RKKY inter-

action for the gapped (Eq.(3)) and gapless (Eq.(1)) cases when

the Fermi energy is located in the conduction band (εF > ∆)

(see Fig. 2(c,d)). The first is that the range function of the

DM term can be negative for the gapped case. We can still im-

plement the pure DM model by properly choosing a specific

Fermi energy εc
F and/or the spacing of neighboring spins. The

second difference is that the gap opening induces an additional

out-of-plane Ising term along the z direction with a relatively

weak correlation between the local spins. This is because the

gap opening effect looks like a perpendicular magnetic field

leading to a Zeeman-like splitting ∆σz.

When we tune the Fermi energy into the gap, the RKKY

interaction can be a short-range interaction, i.e., the BR in-

teraction [17]. Figs 2(e) and 2(f) show that the BR interac-

tion mediated by massive Dirac electrons also contains all the

four terms. This is because the spin orientation on the sur-

face of constant energy is not influenced by the gap opening

away from the vicinity of Dirac point. However, the range

functions are totally different. From Fig. 2(e) we can see

the Heisenberg term is always antiferromagnetic, while the

two Ising terms always give ferromagnetic correlation. Fig.

2(f) shows the exponentially spatial decay behavior of the BR

interaction. The Heisenberg term F
g
1 (R,εF) and Ising term

F
g
3 (R,εF) are dominant with almost the same amplitude un-

der a crossing point of spacing R ≃ 19 nm, which means one

can realize the XZ model HBR
1,2 ≃ F

g
1 (R,εF)

(
Sx

1Sx
2 + Sz

1Sz
2

)
on

the lattice of the surface of TI. Above this crossing point DM

term plays the leading role, however, with rather small values.

With increasing the Fermi energy, the warping effect of the

energy dispersion of the surface states becomes more signif-

icant, resulting in a hexagonal constant energy surface (see

Fig. 1(c)). The warping effect behaves like a perpendicu-

lar anisotropic effective magnetic field that breaks the rota-

tional symmetry, which is different from the gap opening ef-

fect. This anisotropy must lead to an anisotropic, i.e., a crys-

tallographic orientation-dependent RKKY interaction. We

consider two local spins arranged along different crystallo-

graphic directions (see Table I). These formulae indicate that

the anisotropic effective magnetic field results in more com-

plicated spin models.

Spin configurations and anomalous Hall effect.—Now we

turn to discuss the possible spin configurations of the ground

states of the 2D spin systems in the square and triangulated

lattices on the surface of 3D TI. The combination of the

Heisenberg interaction, DM interaction, and Ising interactions

makes it a rich platform to study all kinds of spin configu-

rations. First we consider a pure DM model which can be

implemented by tuning the Fermi energy or the spacing of

neighboring spins. The DM interaction twists the spin orien-

tation of the neighboring spins and leads to a non-coplanar

spin phase or chiral spin phase. For example, the DM interac-

tion cants the spins out of the plane to form an umbrella-like

spin structure with a net ferromagnetic moment (see Fig. 3).

When chiral electrons hop on the non-coplanar spin sites, the

anomalous Hall effect can be realized since they obtain com-

plex phase factor (Berry phase) which works as an internal

magnetic field if it is not canceled. Thus the presence of spin

chirality and net ferromagnetic moment can yield an anoma-

lous Hall effect on the surface of the 3D TI [18, 19]. In a

square spin lattice, the pure DM interaction can lead to a per-

pendicular nearest neighbor spin ordering. Together with the

Heisenberg interaction, the spin ordering can be non-coplanar

in the square lattice shown in Fig. 3 (a) . For a triangulated

spin lattice, the DM term and ferromagnetic Ising terms can

induce spin frustration and have spins to point out of the plane

to form a chiral spin state, illustrated in Fig. 3 (b). If we define

the spin chirality S1 · (S2 ×S3) to describe the ferromagnetic

moment for each triangle, the anomalous Hall effect can hap-

pen since the Berry phase is proportional to the spin chirality

and may not be canceled [19]. In the Kagome lattice antiferro-
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TABLE I: The crystallographic orientation-dependent RKKY interaction caused by the warping effect. The range functions depend on the

angle θ which is defined in the direction respect to the [110] crystallographic direction, and are different from the range functions without

warping effect.

Crystallographic directions HRKKY
1,2

[110] Fw
1 (R,θ ,εF)S1·S2 +Fw

2 (R,θ ,εF) (S1×S2)y +Fw
3 (R,θ ,εF)S

y
1S

y
2 +Fw

4 (R,θ ,εF)Sz
1Sz

2

[110] Fw
1 (R,θ ,εF)S1·S2 +Fw

2 (R,θ ,εF) (S1×S2)y +Fw
3 (R,θ ,εF)S

y
1S

y
2

[010] Fw
1 (R,θ ,εF)S1·S2 +Fw

2 (R,θ ,εF) (S1×S2)z +Fw
3 (R,θ ,εF)S

y
1S

y
2 +Fw

4 (R,θ ,εF)Sz
1Sz

2 +Fw
5 (R,θ ,εF)Sx

1Sx
2

+Fw
6 (R,θ ,εF)

(
Sx

1S
y
2 +S

y
1Sx

2

)

magnet, thermodynamic and neutron scattering measurements

have revealed the chiral spin configuration and net ferromag-

netism induced by the DM interaction [20]. The anomalous

Hall effect can be measured by the transverse Hall conductiv-

ity on the surface of 3D TI.

(b)(a)

FIG. 3: (color online). Schematic chiral spin configurations of spin

systems in the square and triangular lattices with the DM interaction

and Heisenberg interaction.

When the antiferromagnetic Heisenberg interaction domi-

nates, the spin configuration is generally collinear or copla-

nar, which has no spin chirality. The anomalous Hall effect is

not expected. The square spin lattice has long-range collinear

antiferromagnetic ground state. For a triangulated spin lat-

tice, the long-range coplanar state may develop, like the well

known 120o long range order. Since the existence of spin

frustration, the ground state of triangulated spin lattices can

be highly degenerate and show no long range order. The in-

troduction of DM interaction and ferromagnetic Ising inter-

actions will remove the degeneracy partly or completely. By

finely changing the parameters, the spin system can even tran-

sit into a spin-glass phase. This means one can construct an

artificial spin frustration system utilizing STM technique on

the surface of the 3D TI.

Neutron scattering will be a useful tool to detect the sur-

face and bulk spin structure of 3D TI. To enhance the neutron

scattering signal from the surface magnetism, it is useful to

use large angle neutron scattering technique and pile up many

layers of 3D TI with parallel surface.

In summary, we propose a new scheme to manipulate the

carrier mediated spin-spin interaction on the surface of the

3D TI electrically, i.e., RKKY interaction and BR interaction.

The helical surface state leads to the twisted DM interaction

and an in-plane Ising interaction. The gap opening and warp-

ing effects introduce isotropic and anisotropic Ising-like terms

at low and high Fermi energies, respectively. This spin-spin

interaction can be used to realize different spin models by ad-

justing Fermi energy, such as DM model, XXZ model and XZ

model. These realizations would not be destroyed by the gap

opening caused by the breaking of TRS and the warping ef-

fect. The surface magnetism of 3D TIs provides us a model

platform to study spin configurations and dynamics of various

spin models, and pave the way for explore new fundamental

physics and new type spintronic devices.
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