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We calculate the electronic structure of Sr2RuO4, treating correlations within dynamical mean-
field theory. The approach successfully reproduces several experimental results and explains the key
properties of this material: the anisotropic mass renormalization of quasiparticles and the crossover
into an incoherent regime above a low temperature scale. While the orbital differentiation originates
from the proximity of the van Hove singularity, strong correlations are caused by the Hund’s coupling.
The generality of this mechanism for other correlated materials is pointed out.
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Fermi-liquid theory describes the low-energy excita-
tions of metals in terms of quasiparticles, which carry the
quantum numbers of a bare electron but have a renor-
malized mass m∗. Quasiparticles have infinite lifetime
on the Fermi surface and at temperature T = 0, but oth-
erwise acquire a finite lifetime ~/Γ. They carry only a
fraction Z of the total spectral weight associated with
all single-particle excitations, as encoded in the spectral
function A(k, ω). A hallmark of strong correlations is
that some of these interaction-induced renormalizations
(m∗, Z−1, Γ) become large.

The concept of a quasiparticle is meaningful only as
long as its inverse lifetime is smaller than the typical
excitation or thermal energy ~Γ . ~ω, kT . The inter-
nal consistency of Fermi-liquid theory rests on ~Γ ∼

(kT )2/E∗
F ∼ (~ω)2/E∗

F , due to phase-space constraints.
For temperatures larger than a coherence scale T ∗ (∼
E∗

F /k), quasiparticles become short-lived and the Lan-
dau Fermi-liquid description no longer applies. Due to
strong correlations, T ∗ can be much lower than the bare
electronic scale EF /k. The description of the incoherent
regime T > T ∗ and of the associated crossover is a major
challenge which requires new concepts and techniques.

Of all transition metal oxides, the layered perovskite
Sr2RuO4 is undoubtedly the one in which the Fermi
liquid regime has been most studied [1]. Resistivities
obey accurately a T 2 law for T . 30K [2], despite the
large anisotropy ρc/ρab ∼ 103. Sr2RuO4 is also an ideal
material to investigate the crossover into the incoherent
regime. Indeed, at 130K, ρc(T ) reaches a maximum and
decreases as temperature is further increased, while the
T -dependence of ρab remains metallic. ARPES studies
indicate that quasiparticle peaks disappear (by broaden-
ing and loosing spectral weight) at a temperature close
to that where ρc reaches its maximum [3, 4].

The 3-sheet Fermi surface of this material has been

accurately determined by quantum oscillation experi-
ments [1] and is reasonably well described by electronic
structure calculations in the local density approxima-
tion (LDA) [5]. On the other hand, the measured
masses are not reproduced by the LDA. Three bands
of mainly t2g character cross the Fermi surface. The
broadest (3.5 eV) band of xy character gives rise to a
two-dimensional Fermi surface sheet γ. The degenerate
xz and yz orbitals give rise to narrower (1.5 eV) bands
with quasi one-dimensional Fermi surface sheets α and
β. Experimentally, large and anisotropic mass enhance-
ments m∗/mLDA are found, namely (3, 3.5, 5.5) for sheets
α, β, γ, respectively [1].

These experimental findings raise several puzzles, un-
resolved to this day. The large effective masses and the
low coherence scale indicate that Sr2RuO4 is a strongly
correlated material. Surprisingly [6], the largest mass en-
hancement is actually observed for the widest (xy) band.
Furthermore, Ru being a 4d element, the screened on-site
repulsion is not expected to be large (U . 3 eV, some-
what smaller than the bandwidth). In a nutshell, these
puzzles can be loosely summarized by the question: why
is Sr2RuO4 strongly correlated ?

In this letter, we answer these questions in terms of the
electronic structure of the material. Treating correlation
effects within dynamical mean-field theory (DMFT), we
achieve quantitative agreement with experiments. At a
qualitative level, our explanation relies on the Hund’s
coupling J and the proximity of the van Hove singularity
for the xy band. These key elements of our picture, espe-
cially the Hund’s coupling, have general relevance to 4d
transition-metal oxides, as well as to other materials in
which strong correlation effects are observed but are not
due to a strong Hubbard U or the proximity to a Mott
insulator.

The calculations use the full potential implementation
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J [eV] m∗/mLDA|xy m∗/mLDA|xz T ∗

xy[K] T ∗

xz[K] T>[K]

0.0, 0.1 1.7 1.7 > 1000 > 1000 > 1000

0.2 2.3 2.0 300 800 > 1000

0.3 3.2 2.4 100 300 500

0.4 4.5 3.3 60 150 350

TABLE I. Mass enhancement of the xy and xz orbitals, as a
function of Hund’s coupling, for U = 2.3 eV. Other columns:
coherence temperatures as defined in the text.
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FIG. 1. Temperature-dependence of Γ/kT , with ~/Γ the
quasiparticle lifetime. The shading indicates the ‘coherent’
regime with long-lived quasiparticles such that Γ . kT .

of LDA+DMFT as presented in Ref. [7]. The framework
of Ref. [8] gives very similar results. Wannier-like t2g

orbitals are constructed out of Kohn-Sham bands within
the energy window [−3, 1] eV with respect to the Fermi
energy. We use the full rotationally invariant interaction
appropriate for a correct description of atomic multiplets:

HI = U
∑

m

nm↑nm↓ +
∑

m<n,σ

[U ′nmσnnσ̄

+ (U ′
− J)nmσnnσ − Jc†mσcmσ̄c†nσ̄cnσ]

− J
∑

m<n

[c†m↑c
†
m↓cn↑cn↓ + h.c.] (1)

where J is the Hund’s coupling constant, U ′ = U − 2J
and m, n run over t2g orbitals. Ru eg and O p orbitals
are not explicitly included. The importance of correla-
tions leading to charge transfer among the orbitals, mass
renormalizations and satellites was recognized in earlier
studies [9]. We use the strong-coupling continuous-time
Monte-Carlo impurity solver [10] in order to reach the
low-temperature regime where the coherence-incoherence
crossover takes place [11]. We calculated the interac-
tion parameter U from first-principles using constrained-
RPA [12]. The interaction matrix is found to be quite
isotropic with U = 2.5 eV for xy and U = 2.2 eV for xz
orbitals. The stronger mass enhancement of the xy or-
bital can thus not be explained by an anisotropy of the
interactions [6].

We now turn to results. In table I we report

the mass enhancements of each orbital, given within
DMFT by: m∗/mLDA = Z−1

∣

∣

T→0
with Z−1 = 1 −

∂ImΣ(iω)/∂ω
∣

∣

ω→0+ . The derivative is extracted by fit-
ting a fourth-order polynomial to the data for the lowest
six Matsubara frequencies. The calculated mass enhance-
ments for U = 2.3 eV, J = 0.4 eV (used in the remainder
of the paper [13]) are found to be close to the experi-
ment [1].

Table I demonstrates that the Hund’s coupling is es-
sential to reproduce the observed magnitude of mass en-
hancements and the xy − xz differentiation. A compa-
rable mass enhancement (but without xy − xz differen-
tiation) occurs at J = 0 only for the unphysically large
U = 5 eV. In addition we find that, by favoring maxi-
mal angular momentum, the Hund’s coupling drives the
populations of orbitals closer to one another (to 1.29 and
1.36, for xy and xz, respectively) in comparison to the
LDA value (1.23, 1.39), hence improving the agreement
with quantum oscillations experiments (∼ 1.33, 1.33).

To understand the coherence-incoherence crossover, we
display in Fig. 1 the inverse quasiparticle lifetime, plot-
ted as Γ/kT vs. T , with Γ = −ZImΣ(i0+). At very
low temperatures the Fermi-liquid Γ ∝ T 2 behavior is
indicated (dashed). We define the coherence scale T ∗

by Γ(T ∗)/kT ∗ = 1, but the deviations from T 2-law are
visible already at lower temperatures. T ∗ is reported in
Table I and also indicated on Fig. 1. We see that T ∗

is as low as 60 K for the most correlated xy orbital. At
high temperatures T & T> ∼ 400 K, Γ/kT saturates, sig-
naling the ‘incoherent’ regime characterized by a quasi-
linear temperature dependence Γ ∝ kT . An intermediate
crossover region where Γ/kT gradually increases connects
these two regimes.

How do these regimes reveal themselves when probed
by spectroscopic experiments? The left-most panel of
Fig. 2 displays an intensity map of the momentum-
resolved spectral function demonstrating that our re-
sults compare well with ARPES [14]. Panels (b) and
(c) display the energy-distribution curves at two spe-
cific momenta. In the ‘coherent’ regime, these spectra
display sharp peaks corresponding to the Fermi surface
crossings. Upon increasing temperature the quasipar-
ticle peaks broaden and above T> cannot be discerned
anymore. Note that in ARPES [3] the peaks disappear
already at a somewhat lower temperature, possibly due
to the finite momentum resolution in experiment.

The crossover scale kT> manifests itself also in the
dependence of the self-energy on frequency, displayed
in the rightmost panels of Fig. 2. We observe that
deviations from the low-frequency Fermi liquid regime
ReΣ ∼ Σ(0)+ω(1−1/Z), ImΣ ∼ ω2+(πT)2 appear at an
energy scale of order 40 meV∼ kT>, at which a ‘kink’ [16]
is observed in ReΣ(ω). Such a feature at that energy scale
is indeed reported in ARPES (Fig. 2) [15, 17].

The crossover also affects the magnetic response.
On Fig. 3(a) we display the orbitally resolved uni-
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FIG. 2. (a) Intensity map of the spectral function A(k, ω) along Γ →M for 0.55π/a ≤ kx ≤ 1.05π/a, ky = 0 at T = 60 K
compared to ARPES [14]. (b,c) Spectral lineshapes at wavevectors k1, k2 compared to ARPES [3]. (d,e) ImΣ(ω + i0+) and
ReΣ(ω+i0+) for xz orbital at T = 60 K obtained by stochastic maximum entropy (plain line) and Pade approximants (dashed)
compared to ARPES [15]. Also indicated (cross,dotted line) are the low-ω behavior from a polynomial fit.

form magnetic susceptibilities and compare them to the
NMR Knight shift measurements [18]. Saturation to
a Pauli magnetic susceptibility is observed only be-
low T ∗ (shaded). The stronger temperature depen-
dence of the xy orbital related to T ∗

xy < T ∗
xz is repro-

duced well. The total low temperature uniform sus-
ceptibility (1.2 emu/mol) is within the estimated error
(∼ 30% [18]) of the thermodynamic measurements (0.9
emu/mol) [19]) [20]. We also calculated the local suscep-
tibility (inset) and found that it is larger than the uni-
form one, especially for the xz orbital [21]. This signals
antiferromagnetic correlations, in agreement with exper-
imental observations [22].

In Fig. 3(b) we display limω→0

∑

q Imχ(q, ω)/ω and
compare to the NMR data for 1/T1T (we used the values
of hyperfine couplings from Refs. [22, 23]). There, the
data saturate only well below T ∗, illustrating that the
Fermi liquid behavior in two-particle properties is more
fragile than in single-particle ones. Indeed, in the well
known Kondo problem the Kondo resonance persists at
temperatures up to 2TK while the magnetic susceptibility
saturates to a Pauli form only below TK/5.

Having demonstrated that the LDA+DMFT results
agree with experimental data, we turn to theoretical in-
sights. In DMFT the local physics is revealed by solv-
ing an impurity model (atom + bath) with atomic in-
teractions given by Eq. (1). This can be rewritten as
HI = (U−3J)n(n−1)/2−2JS2

−(J/2)T 2, where S is the
total spin and T is the total angular momentum [24]. The
four-electrons subspace separates into five T = 2, S = 0
states, a single T = 0, S = 0 state and nine T = 1, S = 1
states. At J = 0 all these states are degenerate and
form a 15-dimensional representation of an SU(6) sym-
metry group. This high degeneracy results in a very
high coherence scale ∼ 0.5eV and small mass renormal-
izations (see Table I). The Hund’s coupling J lowers

FIG. 3. (a) The uniform susceptibility χm(q = 0) for each
orbital, m = xy, xz. (Inset) Total local susceptibility χloc. =
P

qm
χm(q) compared to that of the S=1 Kondo model. (b)

limω→0

P

q Imχ(q, w)/ω compared to NMR [18].

the SU(6) symmetry down to SU(2)spin×SU(2)orbit with
the 9-fold degenerate atomic multiplet S = 1, T = 1
having lowest energy. The ground state of the impu-
rity model is non-degenerate with S = 0, T = 0 corre-
sponding to exact screening of this atomic multiplet [24].
Thus Sr2RuO4 is a Fermi liquid. The Hund’s coupling
projects the spin degrees of freedom onto a low-energy
manifold characterized by a reduced Kondo coupling, re-
sulting in a suppressed Kondo scale [25, 26]. The ef-
fective low energy model is in our case a S = 1 Kondo
model. Indeed, the inset of Fig. 3(a) demonstrates that
at low T the LDA+DMFT result for χloc. is fit well by
the S = 1 Kondo model Bethe ansatz curve [27]. The
dramatic reduction of coherence scale as a result of the
Hund’s coupling has been noted before in impurity mod-
els [25, 26, 28], DMFT studies of model Hamiltonians [29]
and for iron pnictides [30]. It occurs whenever multi-
plet correlations persist while the on-site U is strongly
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screened (due to the large spatial extension of the corre-
lated orbital as in 4d transition metal oxides, or the large
polarizability of screening orbitals as in pnictides).

The origin of the larger xy effective mass can be
traced to the proximity of the van-Hove singularity.
Higher density of states near the Fermi level implies
weaker dispersion and in turn reflects in a lower value
of the respective hybridization function ∆(iω) at low fre-
quencies (Fig. 4). Indeed, ignoring the self-consistency
(i.e. on the first DMFT iteration), Im∆(1)(i0+) =
−πρF /

[

ReGloc(i0
+)2 + (πρF )2

]

≃ −1/(πρF ) with ρF

the LDA density of states at the Fermi level. The large
value of ρF thus corresponds to a suppressed low-energy
effective hopping [31]. In contrast, the full bandwidth
is larger for the xy, and so is the LDA kinetic energy
(0.27eV for xy, 0.20eV for xz). This reflects in the high-
frequency behavior of the hybridization, indeed larger for
xy at high-frequency. Note that the degree of correlation
cannot be guessed from the kinetic energy or bandwidth
of each band, which would naively suggest a smaller mass
for xy, in contrast to observations.

FIG. 4. The hybridization functions ∆(iω) at the initial
DMFT step and at self consistency. (Inset) The LDA pro-
jected density of states.

In summary, we have demonstrated that several ex-
perimental results for Sr2RuO4 are well reproduced by
the LDA+DMFT method. We have shown that the
suppression of the coherence scale is due to the Hund’s
coupling, and pointed out the generality of this mecha-
nism. We have also shown that the orbital differentia-
tion and larger xy mass is due to the difference in low-
energy hybridization properties of each orbital, caused
by their orientation-dependent bonding properties in this
anisotropic material. This is expected to be relevant to
other layered perovskites, most notably to the metal-
insulator transition in Ca2−xSrxRuO4.
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