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PT-symmetry breaking and laser-absorber modes in optical scattering systems
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Using a scattering matrix formalism, we derive the general scattering properties of optical struc-
tures that are symmetric under a combination of parity and time-reversal (PT ). We demonstrate the
existence of a transition beween PT -symmetric scattering eigenstates, which are norm-preserving,
and symmetry-broken pairs of eigenstates exhibiting net amplification and loss. The system pro-
posed by Longhi [9], which can act simultaneously as a laser and coherent perfect absorber, occurs
at discrete points in the broken symmetry phase, when a pole and zero of the S-matrix coincide.
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Schrödinger equations that violate time-reversal sym-
metry due to a non-Hermitian potential, but retain com-
bined PT (parity-time) symmetry, have been extensively
studied since the work of Bender et. al. [1, 2], who
showed that such systems can exhibit real energy eigen-
values, suggesting a possible generalization of quantum
mechanics. Moreover, PT -symmetric systems can dis-
play a spontaneous breaking of PT -symmetry, at which
the reality of the eigenvalues is lost [1, 3]. Although PT -
symmetric quantum mechanics remains speculative as a
fundamental theory, the idea has been fruitfully extended
to wave optics [3–6]. The classical electrodynamics of
a medium with loss or gain breaks T symmetry in the
mathematical sense, although the underlying quantum
electrodynamics is of course T -symmetric. PT symme-
try is maintained in optical systems by means of balanced
gain and loss regions that transform into one another un-
der parity; thus the combined PT operation, which also
interchanges loss and gain, leaves the system invariant.

We show in this Letter that the scattering behavior of
a general PT -symmetric system can exhibit one or mul-
tiple spontaneous symmetry-breaking transitions. This
result applies to arbitrarily complex PT -symmetric scat-
tering geometries, whereas earlier works on optical PT
symmetry breaking were inherently restricted to waveg-
uide (paraxial) geometries [3–6] for which resonances in
the propagation direction play no role. In addition, we
elucidate the properties of certain singular solutions oc-
curring in such systems, recently studied for special cases
by several authors [7–9], where a pole and a zero of
the scattering matrix (S-matrix) coincide at a specific
real frequency. A real-frequency pole corresponds to the
threshold for laser action, while a real-frequency zero im-
plies the reverse process to lasing, in which a particu-
lar incoming mode is perfectly absorbed. A device ex-
hibiting the latter phenomenon, which does not require
PT -symmetry, has been termed a “coherent perfect ab-
sorber” (CPA) [10]. A PT -symmetric scatterer, at these
singular points, can function simultaneously as a CPA
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and a laser at threshold, as noted by Longhi [9]. The
present work establishes the CPA-laser points as spe-
cial solutions in a wider “phase” of PT -broken scatter-
ing eigenstates. We identify signatures of both the PT -
breaking transition and the CPA-lasing points, for several
exemplary and experimentally-feasible geometries.

S-matrix properties – Consider an optical cavity cou-
pled to a discrete set of scattering channels, denoted
µ = 1, 2, · · · . Incoming fields enter via the input chan-
nels, interact in the cavity, and exit via the output chan-
nels. For simplicity, we focus on the scalar wave equa-
tion, which directly describes one-dimensional (1D) and
two-dimensional (2D) systems. A steady-state scattering
solution for the electric field, E(~r), obeys[

∇2 + n2(~r) (ω2/c2)
]
E(~r) = 0. (1)

For amplifying or dissipative media, n(~r) is complex. The
frequency ω is real for physical processes but can be use-
fully continued to the complex plane. Henceforth, we set
c = 1. Outside the cavity, E has the form

E(~r) =
∑
µ

[
ψµu

in
µ (~r, ω) + ϕµu

out
µ (~r, ω)

]
. (2)

Here uin
µ (~r, ω) and uout

µ (~r, ω) denote the input and output
channel modes, whose exact form depends on the scat-
tering geometry (e.g. plane waves, spherical/cylindrical
waves, or waveguide modes). The complex input and out-
put amplitudes, ψµ and ϕµ, are related by the S-matrix:∑

ν

Sµν(ω)ψν = ϕµ. (3)

For all values of ω, S(ω) is a (complex) symmetric matrix
[11]; if n(~r) and ω are real, it is also unitary.

We now review the properties of S(ω) for a complex,
PT -symmetric system [8]. (Henceforth, P will refer to
any linear symmetry operation such that P2 = 1, includ-
ing not only parity, but also π rotations and inversion.)
First, observe that the T -operator maps incoming chan-
nel modes to outgoing ones:

T uin
µ (~r, ω) = uout

µ (~r, ω∗), (4)



2

where T is the anti-linear complex conjugation operator.
The generalized parity operator P is a linear operator
acting on scalar fields satisfying

P uin/out
µ (~r, ω) =

∑
ν

Pνµuin/out
ν (~r, ω), (5)

where the system-dependent matrix P mixes the channel
functions, but never transforms between incoming and
outgoing channels. Note that (PT )2 = 1.

If the system is PT -symmetric, for any solution (2)
there exists a valid solution (PT )E(~r) at frequency ω∗:∑

µ

[
(PT ϕ)µ uin

µ (~r, ω∗) + (PT ψ)µ uout
µ (~r, ω∗)

]
. (6)

Comparing this to (2) and (3), we conclude that

(PT )S(ω∗) (PT ) = S−1(ω). (7)

This is the fundamental relation obeyed by PT -
symmetric S-matrices, and we will now show that it has
important implications for the eigenvalue spectrum.

Multiplying both sides of (7) by an eigenvector ψn of
S(ω) with eigenvalue sn gives

S(ω∗) (PT ψn) =
1
s∗n

(PT ψn) . (8)

Hence, the inverse of the complex conjugate of any eigen-
value of S(ω) is an eigenvalue of S(ω∗). For real ω, this
implies that |detS(ω)| = 1, just as for S-matrices having
pure T symmetry, which are unitary. Unitarity imposes
a stronger constraint: each eigenvalue is unimodular, so
unitary S-matrices do not have poles or zeros for real ω.
Both T and PT symmetry imply that poles and zeros
occur in complex conjugate pairs.

Symmetry-breaking transition – Eq. (7) is a weaker con-
straint than unitarity, and can be satisfied in two ways:
either each eigenvalue is itself unimodular, or the eigen-
values form pairs with reciprocal moduli. These two pos-
sibilities correspond to symmetric and symmetry-broken
scattering behavior. In 1D, there are just two scattering
eigenvectors, so the entire S-matrix is either in the sym-
metric or broken-symmetry “phase”. (In higher dimen-
sions, as we will see, the transition can occur in different
eigenspaces of the S-matrix, so that the system can be
in a mixed phase; initially we focus on 1D.) Let us de-
note the eigenvectors by ψ±. In the symmetric phase,
each ψ± is itself PT -symmetric, i.e. PT ψ± ∝ ψ±, so the
eigenstate exhibits no net amplification nor dissipation
(|s±| = 1). In the broken-symmetry phase, ψ± is not
itself PT -symmetric but the pair satisfies PT by trans-
forming into each other: PT ψ± = ψ∓, where s± = 1/s∗∓.
Each eigenstate in the pair spontaneously breaks PT
symmetry; one exhibits amplification, and the other dis-
sipation. Similar to transitions in Hamiltonian systems,
such as the transition from real to complex eigenvalues

-1

-0.5

0

0.5

1

1.5

1410 1420 1430

-0.2

-0.1

0

0.1

0.2

1418 1419

0

L

ωL

lo
g

  
 [

sc
a
tt

e
re

d
 i
n

te
n

si
ty

]

ω  Lc

1
0

Loss Gain

1440

FIG. 1: (Color online) Semilog plot of S-matrix eigenvalue
intensities log10 |s±|2 versus frequency ω (solid curves), for a
1D PT -symmetric system of length L with balanced refractive
index n = 3± 0.005i in each half (inset). The PT symmetry
is spontaneously broken at ωc ≈ 1418.21/L. Dashed curves
show the minimum scattered intensity for equal-intensity in-
put beams of variable relative phase; in the broken-symmetry
regime, net amplification always occurs.

of PT -symmetric Hamiltonians, the scattering transition
can be induced by tuning the parameters of S(ω) [12].

Having shown that a PT -breaking transition can take
place in the scattering behavior of PT -symmetric sys-
tems, we turn now to some concrete examples to see how
it occurs. First, consider an arbitrary 1D system with
PT -symmetric n(x); its S-matrix is parameterized by

S =
(
rL t
t rR

)
= t

(
(1− |t|−2) 1

ib 1
1 ib

)
, (9)

where b ≡ −irR/t ∈ R; rR, rL are the reflection am-
plitudes from right and left; and t is the (direction-
independent) transmission amplitude. In general |rR| 6=
|rL|, but their relative phase must be 0 or π. Although
S depends on three real numbers, {Re(t), Im(t),b}, its
eigenvalues only depend on two, |t| and b, for we can
scale out the phase of t. One can show that the criterion
for the eigenvalues of S to be unimodular is:

|(rL − rR)/t| ≡ B(ω, τ) ≤ 2. (10)

For fixed Re{n(x)}, we write B as a function of ω and a
T -breaking parameter τ . On varying ω and/or τ , violat-
ing (10) brings us into the broken-symmetry phase.

Fig. 1 shows how the transition occurs by varying ω,
in a simple slab of total length L with fixed n = n0 ± iτ
in each half. The critical frequency can be shown to be

ωc ≈ ln(2n0/τ) c /τL. (11)

The resulting “phase diagram” is shown in Fig. 2(a). The
discrete points in the broken-symmetry phase correspond
to the CPA-laser solutions which we will soon discuss;
these lie along a line given by the equation [7]

ω ≈ ωc + (c/τL) ln[(n2
0 + 1)/(n2

0 − 1)]. (12)
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FIG. 2: (Color online) Phase diagram of S-matrix eigenvalues
for 1D PT -symmetric systems. The structure in (a) is the
same as in Fig. 1. The structure in (b) has a real-index region
of length L/10 in the center, with all other parameters the
same as in (a). It shows re-entrant behavior as ω is varied.
White areas show the PT -symmetric phase, and grey areas
show the PT -broken phase; circles in (a) show the CPA-laser
solutions. In (a), the dashed line shows the approximate phase
boundary given by Eq. (11); the points A, B, and C on this
boundary are referenced in Fig. 3. For fixed ω, stronger T -
breaking always favors broken symmetry.

The strong oscillations of log |s±| in Fig. 1 occur as the
system crosses this curve. Without fine-tuning n0, the
system will not hit one of the CPA-laser solutions exactly;
hence, varying ω does not bring log |s±| to ±∞, though
it can become quite large.

With different n(x), more complicated phase diagrams
are possible. Fig. 2(b) shows the effect of a real-index
region inserted between the gain and loss regions. As we
increase ω, internal resonances in the real-index region
cause the trapping time to oscillate with ω; hence the
effective T -breaking perturbation strength oscillates, and
the system re-enters the symmetric phase periodically.

In these 1D structures, the symmetry-breaking transi-
tion can be probed by measuring the total intensity scat-
tered by equal-intensity input beams of variable relative
phase φ. In the symmetric phase, two particular values of
φ(ω, n) correspond to unimodular S-matrix eigenstates;
for other values of φ, both net amplification and dissipa-
tion can be observed in the total output |Sψ|2, since the
system is not unitary. In the broken-symmetry phase,
where |s+| > 1, it can be shown that

|Sψ|2 = 1 + |a|2
(
|s+|2 + |s+|−2 − 2

)
> 1, (13)

where a = ψT1 ψ/ψ
T
1 ψ1. Thus all values of φ for balanced

inputs ψ give rise to amplification (Fig. 1). This signa-
ture of the PT transition should be easily observable.

Fig. 3 shows the behavior of the poles and zeros in the
complex plane for the simple 2-layer structure. When
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FIG. 3: (Color online) (a) Trajectories of S-matrix poles and
zeros for the two-layer system of Fig. 1. Filled circles and
squares show the zeros and poles for τ = |Im[n]| = 0; solid
curves show their trajectories as τ is increased. Filled stars
show CPA-laser solutions where zeros and poles meet on the
real axis. For the middle set of trajectories, this happens at
ωL = 1468.7, τ = 4.982× 10−3. The transition occurs at the
“anti-crossings”, indicated by the representative points A, B,
and C, which match the values of {Re[ω], τ} marked in Fig. 2.
(b) Log of the transmittance for τ = 0.005 and τ = 0, showing
the doubled free spectral range in the CPA-laser.

τ = 0, the poles and zeros of the T -symmetric S-matrix
are located symmetrically around the real axis, and can
be labeled by the parity of the corresponding eigen-
vectors. As τ increases from zero, PT symmetry re-
quires that the zeros and poles move symmetrically in
the complex plane. Neighboring zeros (poles) approach
each other pairwise and undergo an anti-crossing, caus-
ing strong parity mixing. The horizontal motion of the
poles and zeros corresponds to the symmetric phase of
the scatterer, and the vertical motion to the broken-
symmetry phase. The anti-crossing corresponds to the
phase boundary, as can be seen by comparing the points
labeled A, B and C in Figs. 2 and 3.

CPA-Laser – The CPA-laser points occur when a pole
and a zero of the S-matrix coincide on the real axis, as
shown in Fig. 3. This corresponds to the singular case
in which |sn| → 0, implying |1/s∗n| → ∞, while their
product remains unity. Physically, the scattering system
behaves simultaneously as a laser at threshold and a CPA
[9]. Fig. 3 also indicates a very interesting property of
these solutions: only half the zero-pole pairs flow upwards
and reach the real axis, while the other half go off to in-
finity and do not produce laser-absorber modes; thus, the
CPA-laser lines have twice the free spectral range of the
passive cavity resonances. For ωL � 1, they occur at
frequencies ωm ≈ (2m + 0.5)π/(n0L), where m is an in-
teger, exactly half-way between alternate pairs of passive
cavity resonances. This property of the CPA-laser should
be straightforward to demonstrate experimentally.

In a general PT -symmetric system, the poles and zeros
are related by complex conjugation, so any PT system
that is a laser must be a CPA-laser. Even away from the
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FIG. 4: (Color online) Semilog plot of S-matrix eigenvalue in-
tensities log10 |s|2 versus frequency ω, for a 2D PT -symmetric
disk of radius R and refractive indices 1.5±0.1i. The S-matrix
is truncated to angular momenta |m| ≤ 20. Most of the 41
eigenvalues are unimodular at these frequencies; those with
higher average m, near resonances of the passive disk, show
greater symmetry breaking. The colors distinguish several
different pairs of PT -broken eigenvalues.

CPA-laser singularities, the PT -symmetric cavity in the
broken symmetry phase is a unique interferometric am-
plifier: for coherent input radiation not corresponding
closely to the damped S-matrix eigenvector, amplifica-
tion takes place—in particular, this typically occurs for
one-sided illumination. However, coherent illumination
from both sides, with appropriate relative phase and am-
plitude corresponding to the damped eigenvector, leads
instead to strong absorption. The CPA-laser is the ex-
treme case, where the gain/loss contrast is infinite.

The possibility of lasing in a PT system is not obvi-
ous, as naively one might argue that photons traversing
the device should experience no net gain. The presence
of spontaneous symmetry breaking invalidates this argu-
ment. Photons in amplifying modes spend more time
in the gain region than the loss region; hence, as the
gain/loss parameter τ is increased, it eventually becomes
possible for one mode to overcome the outcoupling loss
and lase. As a self-organized oscillator, the CPA-laser
will automatically emit in the amplifying eigenstate.

Disk PT -scatterer – Consider any 2D PT -symmetric
body in free space. Scattering in this system is naturally
described using angular momentum channel functions,

uin/out
m (r, φ, ω) = H∓

m(ωr) e±imφ, m = 0,±1, · · · (14)

For a region of linear dimensions R and average index
n̄, only states with m . n̄kR are significantly scattered,
so we can truncate the infinite S-matrix to N & n̄kR
channels. As this S-matrix is tuned, multiple pairs of
eigenstates can undergo PT -breaking, so the phases of
the S-matrix are indexed by the number of pairs of PT -
broken eigenstates. In Fig. 4, we show this behavior for
a disk with balanced semicircular gain and loss regions,
with the S-matrix calculated using the R-matrix method
[10, 13]. The symmetry-breaking is non-monotonic in ω,
similar to the 1D example of Fig.2(b). The regions of
strong PT -breaking are roughly associated with the res-

onances of the T -symmetric disk, as symmetry-breaking
is enhanced by the dwell time in the medium. This points
to the possibility of microdisk based amplifier-absorbers.

Conclusion – We have shown that PT -symmetric op-
tical scattering systems generically display spontaneous
symmetry breaking, with a unimodular phase where the
S-matrix eigenstates are norm-preserving, and a broken
symmetry phase in which they are pairwise amplifying
and damping with reciprocal eigenvalue moduli. This
PT -breaking transition can be tested experimentally, us-
ing 1D heterojunction geometries (with realistic values
of the gain/loss parameter) that are distinctly different
from the paraxial geometries previously suggested for ob-
serving PT symmetry breaking in optics [3–6]. In our
analysis, we have neglected the role of the noise due to
amplified spontaneous emission, which may be significant
at the singular CPA-laser points [8]. However this noise
should not preclude observation of experimental signa-
tures of CPA-lasing, e.g. the doubling of the free spectral
range relative to the passive cavity. Moreover one may
study the inteferometric amplifying behavior in the bro-
ken symmetry phase well below the CPA-laser points,
where the noise will be substantially smaller.
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