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We point out that SO(2Nc) gauge theory with Nf fundamental Dirac fermions does not have a
sign problem at finite baryon number chemical potential µB . One can thus use lattice Monte Carlo
simulations to study this theory at finite density. The absence of a sign problem in the SO(2Nc)
theory is particularly interesting because a wide class of observables in the SO(2Nc) theory coincide
with observables in QCD in the large Nc limit, as we show using the technique of large Nc orbifold
equivalence. We argue that the orbifold equivalence between the two theories continues to hold at
finite µB provided one adds appropriate deformation terms to the SO(2Nc) theory. This opens up
the prospect of learning about QCD at finite µB using lattice studies of the SO(2Nc) theory.

The properties of QCD at high baryon densities have
long been a subject of intense interest. Apart from its in-
trinsic theoretical appeal, this subject is important in as-
trophysics, especially in the study of neutron stars. Due
to asymptotic freedom, the behavior of QCD at asymp-
totically high chemical potential for baryon number µB is
well understood theoretically, and QCD becomes a color
superconductor as µB → ∞ [1]. At more phenomeno-
logically realistic densities, QCD is strongly coupled, and
thus not amenable to controlled analytic treatment. Lat-
tice Monte Carlo is very useful at µB = 0. However, it
runs into trouble at µB 6= 0 due to the fermion sign prob-
lem: the fermion determinant becomes complex, render-
ing importance sampling exponentially difficult.

Over the years, several gauge theories that do not suffer
from sign problems at finite density have been explored.
The main examples are QCD with an isospin chemical
potential[2], two-color QCD[3, 4], and adjoint QCD[4–
6]. However, while interesting, these theories have many
qualitative differences from Nc = 3 QCD, such as e.g.

explicitly broken flavor symmetry in the first case.

Here, we propose a path to study QCD at µB 6= 0 in the
large Nc limit using lattice Monte Carlo methods. Large
Nc QCD [7] gives many insights into non-perturbative
strong interactions at zero µB: it is often a good approx-
imation to our Nc = 3 world. The extent to which the
finite-density large Nc world is a good approximation to
the Nc = 3 world is discussed in, for instance, Refs. [8].

Our proposal rests on two observations. The first is
that all representations of SO(2Nc) are real, and as a re-
sult SO(2Nc) gauge theory with Nf fundamental Dirac
fermions does not have a sign problem at µB 6= 0. This
alone already makes the theory worth studying, espe-
cially because the SO(2Nc) theory shares a number of
qualitative features with Nc ≥ 3 QCD. For example, it
has 2Nc-valence-quark baryons [9].

Our second observation is that the connection between
the SO(2Nc) theory and SU(Nc) QCD is in fact quan-

titative. We show that SU(Nc) gauge theory with Nf

fundamental Dirac fermions (i.e., large Nc QCD) can be

obtained as an orbifold projection of the SO(2Nc) the-
ory. Large Nc orbifold equivalence [10–12] then guar-
antees that all correlation functions of operators in the
‘neutral’ sector (i.e., invariant under the symmetry used
for the projection) coincide in both theories to leading
order in the 1/Nc expansion, provided the symmetries
used in the projection are not spontaneously broken. The
necessary symmetries are unbroken at µB = 0, and thus
the SO(2Nc) theory and large Nc QCD have coincid-
ing correlation functions for a broad class of operators.
The equivalence should continue to hold at µB 6= 0, pro-

vided one adds certain deformation terms to the SO(2Nc)
theory which protect the orbifold symmetry, but do not
otherwise affect the connection of the theory to large Nc

QCD. We show that there exist deformations that pro-
tect the orbifold symmetry at least for µB ≪ ΛQCD, and
likely for larger µB as well, all while keeping the the-
ory sign-problem free in the chiral limit. The existence
of a sign-problem-free theory equivalent to finite-density
large Nc QCD is unexpected and quite remarkable.

The orbifold equivalence between the two theories at
µB = 0 can be checked using lattice simulations, as can
the question of whether the necessary symmetries are
protected at large µB. If the proposal passes these checks,
the SO(2Nc) gauge theory may be used to perform non-
perturbative studies of large Nc QCD at finite density.
SO(2Nc) gauge theory. The SO(2Nc) 4D gauge the-

ory with Nf flavors of Dirac fermions (in Euclidean sig-
nature) is

LSO =
1

4g2
SO

Tr F 2
µν +

Nf
∑

a=1

q̄a(γµDµ +mq +µBγ
4)qa (1)

where Fµν is the SO(2Nc) field strength, Dµ = ∂µ + iAµ,
qa is a Dirac fermion in the fundamental representation
of SO(2Nc), and mq and µB are the quark mass and
chemical potential. Aµ = Ai

µti, where the ti are the
generators of SO(2Nc); we take Tr titj = δij .

When mq = µB = 0, Eq. (1) has an SU(Nf )L ×
SU(Nf)R ×U(1)B ×U(1)A chiral symmetry at the clas-
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sical level, just like SU(Nc) QCD. However, the chi-
ral symmetry of the theory is actually larger than this,
since SO(2Nc) is a real gauge group; classically it ex-
tends to U(2Nf) [13] . U(1)A ⊂ U(2Nf ) is anoma-
lous as usual at finite Nc. The chiral condensate q̄q
breaks to SO(2Nf ) ⊇ SU(Nf )V . The resulting Nambu-
Goldstone bosons (NGBs), with mass mπ ∼ √

mq, live
on SU(2Nf)/SO(2Nf). Some of the NGBs, the “pions”,
are pseudoscalars that couple to q̄aγ5qb, while the oth-
ers, which we will refer to as baryonic pions, are charged
under U(1)B. The baryonic pions are parity even [14]
and couple to color-singlet operators of the form Sab and
S†

ab, where Sab = qT
a Cγ

5qb and C = γ4γ2 is the charge
conjugation matrix satisfying CγµC

−1 = −γ∗µ.
There are Nf(Nf + 1) baryonic pions in the theory,

and N2
f −1 pions with no baryon number. The SO(2Nc)

theory also contains baryon-number-charged cousins of
other mesons normally encountered in QCD.

Now consider turning on µB 6= 0. Since in the chiral
limit the baryonic pions are the lightest particles charged
under U(1)B, once µB ≥ mπ/2, one would expect the
system to undergo a second-order phase transition to a
phase with a non-zero density of baryonic pions. In fact,
on general grounds, one expects that the baryonic pi-
ons will Bose-condense. In other theories with ‘baryonic
pions’, namely 2-color QCD and adjoint QCD, explicit
chiral perturbation theory (χPT) calculations show that
this does indeed happen [4]. We expect the same in
the SO(2Nc) theory [14]. The baryonic pion conden-
sate breaks U(1)B → Z2. The breaking of U(1)B at
µB > mπ/2 in the SO(2Nc) gauge theory is in sharp
contrast to the way SU(Nc) QCD behaves, where there
are no baryonic pions to be condensed. We return to this
crucial point below, in the context of orbifold projections.

Orbifold projection to SU(Nc). To perform an orb-
ifold projection, one identifies a discrete subgroup of the
symmetry group of the ‘parent’ theory, which for us is the
SO(2Nc) theory, and sets to zero all of the degrees of free-
dom in the parent theory that are not invariant under the
discrete symmetry. This gives a ‘daughter’ theory, which
in this case turns out to be large Nc QCD. The orbifold
projection uses a Z2 subgroup of the SO(2Nc) × U(1)B

symmetry of the SO(2Nc) theory.
To define the orbifold projection, take J ∈ SO(2Nc)

to be given by J = iσ2 ⊗ 1Nc
; 1N is an N × N identity

matrix. (For earlier work on projections from SO(2Nc)
to SU(Nc), see [15].) J generates a Z4 subgroup of
SO(2Nc). Next, let ω = eiπ/2 ∈ U(1)B generate a Z4

subgroup of U(1)B. The action of J and ω on Aµ, qa is

Aµ → JAµJ
T , qa → −ωJqa, (2)

generating a Z2 subgroup of SO(2Nc) × U(1)B.
Aµ can be written in Nc ×Nc blocks as

Aµ = i

(

AA
µ +BA

µ CA
µ −DS

µ

CA
µ +DS

µ AA
µ −BA

µ

)

, (3)

where fields with an ‘A’ (‘S’) superscript are anti-
symmetric (symmetric) matrices. Under the Z2 sym-
metry, AA

µ , D
S
µ are even while BA

µ , C
A
µ are odd, so the

orbifold projection sets BA
µ = CA

µ = 0. So

Aproj
µ = i

(

AA
µ −DS

µ

DS
µ AA

µ

)

. (4)

If one defines a unitary matrix

P =
1√
2

(

1Nc
i1Nc

1Nc
−i1Nc

)

, (5)

then

PAproj
µ P−1 =

(

−AT
µ 0

0 Aµ

)

, (6)

where Aµ ≡ DS
µ + iAA

µ is a U(Nc) gauge field. However,
the difference between U(Nc) and SU(Nc) is a 1/N2

c cor-
rection. The gauge part of the action of the orbifold-
projected parent theory is thus simply

Lgauge,proj =
2

4g2
SO

Tr FµνFµν . (7)

where Fµν is the SU(Nc) field strength. The gauge
coupling constant of the SU(Nc) theory, gSU , is simply
2g2

SU = g2
SO.

Now consider the effect of the orbifold on qa. Writing
(λ+

a , λ
−
a )T = (Pqa)T , the action of the Z2 symmetry is

just (λ+
a , λ

−
a )T → (−λ+

a , λ
−
a )T . The projection consists

of setting λ+
a = 0.

The action of the daughter theory is the action of the
parent theory after the projection, with a rescaled cou-
pling constant:

L =
1

4g2
SU

Tr F2
µν+

Nf
∑

a=1

ψ̄a
(

γµDµ +mq + µBγ
4
)

ψa (8)

where Fµν is the field strength of the SU(Nc) gauge field
Aµ = DS

µ + iAA
µ , ψa = λ−a , and Dµ = ∂µ + iAµ. This

is an SU(Nc) gauge theory with Nf flavors of funda-
mental Dirac fermions. So the orbifold projection relates
SO(2Nc) gauge theory to large Nc QCD.

Neutral sector. The claim of orbifold equivalence
is that the connected correlators of neutral operators
in orbifold-equivalent parent and daughter theories will
agree at large Nc. We define neutral operators to be
those that are invariant under the projection symmetry.
Color-singlet gluonic operators in the SO(2Nc) theory
are neutral, and are mapped to C-even gluonic operators
in SU(Nc) theory by the projection.

For fermionic observables, things are more subtle.
Some examples of fermion bilinears that survive the pro-
jection are given in Table I. An example of a bilinear that
does not survive the projection is qT

a Cγ
5qb, the baryonic

pion operator; the same is true for all of the baryonic
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SO(2Nc) theory SU(Nc) theory

q̄aqb ψ̄aψb

q̄aγ
µqb ψ̄aγ

µψb

q̄aγ
µ∂µqb ψ̄aγ

µ∂µψb

TABLE I. Examples of fermion bilinears whose correlation
functions match between the two theories at large Nc.

mesons. This is because all such operators have charge
−1 under the Z2 projection symmetry. Thus correla-
tion functions involving baryonic mesons have no coun-
terparts in large Nc QCD. Note that this implies that
the counting of neutral NG bosons matches in the two
theories [11], which is an important sanity check on the
large Nc equivalence.

Validity of the equivalence. Given an orbifold projec-
tion between two theories, the correlation functions of
neutral operators will agree in perturbation theory[10].
For an orbifold equivalence to hold non-perturbatively,
the symmetries used in the projection must not be spon-
taneously broken [11]. While the proofs of Refs. [11] need
be generalized to apply to projections involving funda-
mental fermions[14][16], it is natural to conjecture that
the symmetry realization condition remains the key to
the non-perturbative validity of the equivalence.

In our case, U(1)B → Z2 when µB > mπ/2 due to
baryonic pion condensation. This breaks the projection
symmetry, destroying the equivalence. All is not lost,
however: one can add a deformation term to the SO(2Nc)
theory to prevent baryonic pion condensation and protect
U(1)B. The simplest choice is

LSO → LSO +
c2

Λ2

∑

a,b

S†
abSab (9)

where Λ ∼ ΛQCD. The deformed theory should be
viewed as an effective field theory, defined with an im-
plicit (lattice) cutoff, since the deformation is an irrele-
vant operator. Large Nc factorization implies that the
deformed system would pay an energy cost O(c2) for the
formation of a baryonic pion condensate. Thus provided
c is large enough, the deformation prevents baryonic pion
condensation, saving the validity of the orbifold equiva-
lence between the deformed SO(2Nc) gauge theory and
large Nc QCD.

By construction, deformation terms do not survive the
orbifold projection to QCD, so the value of c does not
affect the correlation functions of neutral operators so
long as the equivalence holds. Much like the double-
trace deformations used to prevent [17] center-symmetry
breaking in Eguchi-Kawai reduction [18], our deforma-
tion terms hide themselves once they do their job.

The sign problem. Consider the undeformed SO(2Nc)
theory. Then the Dirac operator D = D/ + mq + µBγ4

satisfies Cγ5D(Cγ5)−1 = D∗. If the lattice form of

the Dirac operator also has this symmetry, then if ϕ
satisfies Dϕ = λϕ, D(γ5C−1ϕ∗) = λ∗(γ5C−1ϕ∗), and
ϕ, γ5C−1ϕ∗ are orthogonal [5]. So eigenvalues form pairs
(λ, λ∗), and hence det(D) ≥ 0, even at µB 6= 0.

For simulations of the deformed theory, the action
must be made quadratic in q, which can be arranged
by ‘integrating in’ auxiliary fields. For general values of
mq, µB, the Cγ5D(Cγ5)−1 = D∗ symmetry of the Dirac
operator is crucial for avoiding the sign problem, but de-
formations generically break it. There are a variety of
deformations that prevent baryonic pion condensation,
and several ways of introducing auxiliary fields. A defor-
mation which turns out to have an simple effect on the
deformed theory[14] and can be implemented without a
sign problem in the chiral limit is

Ld =
c2

ΛQCD

(

S†abSab − P †abPab

)

(10)

where Pab = qT
a Cqb. Using Fierz identities, this can be

written as

Ld =
c2

ΛQCD

[

(q̄i
aq

j
a)2 + (q̄i

aγ
5qj

a)2 +
1

2
(q̄i

aγ
µνqj

a)2
]

(11)

where there is an implied sum over the color labels i, j.
We then introduce real auxiliary fields that couple to the
flavor-singlet bilinears q̄i · · · qj . This allows us to main-
tain a CDC−1 = −D∗ symmetry for any c, µB so long
as mq = 0, avoiding the sign problem. While in practical
lattice calculations mq > 0, the lack of a sign problem at
mq = 0 implies that the phase-quenching approximation
must become increasingly accurate as mq → 0 in this
theory.

The sign-free deformation may seem peculiar, espe-
cially since Ld is not positive definite. However, one can
get a non-perturbative understanding of its effects using
low-energy effective field theory. The result of this analy-
sis, which will presented elsewhere[14], is very simple: the
deformation raises the mass of the baryonic pions, push-
ing their condensation point past µB = mπ/2, saving the
equivalence. Once µB ∼ ΛQCD, baryonic mesons with
masses ∼ ΛQCD might condense. Whether this happens
depends on which states in the deformed theory have
the smallest mass per U(1)B charge, and will have to be
resolved by lattice simulations. It would be very interest-
ing if the equivalence works through the nuclear matter
transition.

More applications. The arguments so far also hold at
finite temperature. In particular, the details of the chi-
ral transition can be studied as long as the baryonic pion
does not condense. So even without the deformation, one
can gain valuable insights into hot QCD. Our framework
also gives insights into the behavior of phase-quenched
simulations. When Nf is even, one can do a projec-
tion of the SO theory by using a Z4 subgroup of the
U(1)I3 ∈ SU(Nf )V ‘isospin’ flavor symmetry instead of
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U(1)B. The daughter theory is again large Nc QCD, but
now µB in the parent is mapped to an isospin chemical
potential µI in QCD. The resulting daughter-daughter
equivalence between QCD with µB 6= 0 and µI 6= 0 holds
for µ < mπ/2. It has been previously noticed phase-
quenching QCD with µB < mπ/2 seems to be a good
approximation for some observables, and that the phase
quenched theory is just QCD with µI 6= 0 [19]. The
daughter-daughter equivalence guarantees that at large
Nc phase-quenching is exact for observables with zero
baryon and isospin charges, giving additional insights
into the behavior of this approximation[20]. The equiv-
alence can be extended to a holographic setup[21], and
the coincidence of the phase diagram in the baryonic[22]
and isospin[23] theories can be seen analytically.

Outlook. We have proposed a way to dodge the sign
problem in the chiral limit of large Nc QCD by work-
ing with a large-Nc equivalent SO(2Nc) theory. There
are many directions for future work, some of which were
mentioned above. Of these, tests of the proposal on the
lattice and EFT analysis of the IR physics of the de-
formed theory are perhaps the most urgent. Finally, one
might wonder if orbifold equivalence can allow one to
dodge sign problems in other systems, for instance in
SYM theories [24]. This would make the Monte-Carlo
approach to the gauge/gravity duality (see, e.g. [25])
much more tractable.
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