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In the fermionic sector of top-down approaches to holographic systems, one generically finds
that the fermions are coupled to gravity and gauge fields in a variety of ways, beyond minimal
coupling. In this paper, we take one such interaction – a Pauli, or dipole, interaction – and study
its effects on fermion correlators. We find that this interaction modifies the fermion spectral density
in a remarkable way. As we change the strength of the interaction, we find that spectral weight
is transferred between bands, and beyond a critical value, a gap emerges in the fermion density
of states. A possible interpretation of this bulk interaction then is that it drives the dynamical
formation of a (Mott) gap, in the absence of continuous symmetry breaking.

Holography provides a method to study the dynam-
ics of certain strongly correlated systems. In the recent
past, there has been much discussion about the two-point
correlation functions (and thus the spectral density) of
probe fermionic operators coupled to these strongly cor-
related systems; see for example [1–4] and their citations.
By modifying the geometry and field content of the bulk
geometry, one changes the properties of the strongly cou-
pled system under study. The infra-red properties of the
correlation functions of the probe operators are deter-
mined both by the properties of the dual geometry and
how the probes are coupled to it. A variety of emergent
infra-red properties have been identified.

In most cases, we do not possess a microscopic under-
standing of the field theory dynamics under study, be-
yond simple properties such as temperature, charge den-
sity, etc. In the so-called “bottom-up” approaches, one
modifies these simple properties by changing features of
the bulk theory. In some situations, where we have ex-
plicit ‘ultra-violet completions’ in terms of string or M-
theory constructions, one may know more of how to in-
terpret the dual field theory. Starting in ten or eleven
dimensions, one can obtain (super)gravitational descrip-
tions of the bulk physics, and in some cases correspond-
ing knowledge of the dual field theory. Recently, it was
shown [5–8] that there are consistent truncations of ten
and eleven dimensional supergravities to five and four di-
mensional bulk theories that possess an interesting class
of gauge interactions and charged matter. The gauge and
matter content allows for interesting condensed matter
physics phenomena in either two or three (spatial) di-
mensions, such as superconductivity, to be explored in a
fully consistent ‘top-down’ approach [9–11]. In addition
to this construction, there are of course many other brane
constructions that have and can be used.

Recently, the fermionic content of these consistent
truncations has been worked out in detail [12, 13]. We
emphasize here that the fermionic sectors possess a num-
ber of generic features, many of which have not been
explored in the holographic literature to date, and thus
there is a good chance that these features might lead
to interesting phenomena related to condensed matter
physics. In this paper, we study a simple example in
which a fermion is coupled to a gauge field through a

dipole interaction in the bulk. Remarkably, we find that
as the strength of this interaction is varied, a new band
in the density of states emerges, spectral density is trans-
ferred between bands, and, beyond a critical interaction
strength, a gap opens up.1

Such phenomena occur in several important condensed
matter systems. The typical systems, Mott insulators,
where a gap is dynamically generated, possess a half-
filled band [15, 16]. A key consequence of the dynamical
generation of a charge gap is that of spectral weight trans-
fer [17, 18] — the removal of a single fermionic charge
carrier (attained by doping) results in rearrangements of
the spectrum on all energy scales. Since the formation
of bound states [15, 16, 19] in the Mott problem repre-
sents an example of strong-coupling physics it should in
principle be describable by gauge-gravity duality2. The
holographic system that we study in this paper describes
both the dynamical appearance of a gap to low energy
fermion transport and spectral weight transfer, the two
key features of Mott physics.

The consistent truncation referred to above gives rise
to a number of generic couplings of fermions. One feature
which we believe to be important, but will not consider
here, is the fact that quite generically one finds couplings
between spin-1/2 and spin-3/2 fermions. Since string or
M-theory is at its core a gravitational theory with su-
persymmetry, spin-3/2 gravitinos (massive or massless)
are generically present and coupled to other fermions. In
addition, there are gauge fields and both charged and un-
charged matter fields, such as scalars, that are coupled in

1 Our analysis here is in contrast to the one carried out on a
holographic superconducting background [14] where by coupling
a probe fermion to the charged scalar φ of the bulk through
the so-called Majorana coupling η∗5φ

∗ψTC Γ5ψ + h.c. (with η5
and C being the strength of the Majorana coupling and the
charge conjugation matrix, respectively), a gap to the creation
of quasiparticle-hole pairs was observed in the spectral density
of the dual fermionic operator near the Fermi surface. Such a
gap is a result of coupling to a symmetry breaking condensate
(where the probe fermion is coupled to the vev of the scalar
through the aforementioned Majorana coupling) and is distinct
from that studied here.

2 The idea of modeling Mott insulators using holography has been
previously mentioned in the literature [20, 21], although in a
schematic way and not in regard to fermion correlators.
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specific ways, and, depending on the range of parameters,
could cause instabilities. For applications to holographic
superconductors, one finds suitable Majorana charge cou-
plings for example.

In this paper, we consider just one form of non-
minimal coupling, in which the gauge field couples to
spin-1/2 fermions through a dipole interaction of the
form Fabψ̄Γabψ. In fact, we will only consider here the
simplest possible setup, in which the fermion propagates
in the background of a Reissner-Nordström (RN) AdSd+1

black-hole. In this sense, we are employing a bottom-
up construction, inspired by generic top-down models.
It would be interesting to extend our results to other
bulk systems, for example those in which there are also
charged scalars which can, in principle, condense and give
rise to superconductivity.

Thus, we consider here the Lagrangian (in d + 1 ≥ 4
dimensions)

√
−g iψ̄( /D −m− ip /F )ψ, (1)

where /D = eMc Γc
(
∂M + 1

4ω
ab
M Γab − iqAM

)
and /F =

1
2ΓabeMa e

N
b FMN , with eMa and ω ab

M being the (inverse)
vielbein and the spin connection, respectively.

For notational simplicity, we will rescale p, namely
p → pL/(d − 2), in what follows. The significance of

the parameters m and q are well-known: they correspond
to the scaling dimension and global U(1) charge of dual
fermionic operators. The significance of p in the dual
field theory is not apparent however. In the holographic
system, since p is a coupling of the probe fermion to the
bulk geometry, we expect that it may modify the corre-
lation functions of the dual fermionic operator.

The Reissner-Nordström AdSd+1 (RN-AdS) geometry
has a metric and a gauge connection which can be written

ds2 =
r2

L2

[
−f(r)dt2 + d~x2

]
+
L2

r2
dr2

f(r)
, (2)

A = µ[1− (r0/r)d−2]dt, (3)

where f(r) = 1−M (r0/r)
d +Q2 (r0/r)

2(d−1), M = 1 +
Q2, µ =

√
(d− 1)/(2d− 4)Qr0/L2, with r0 being the

horizon radius. To decouple the equation of motion, we
introduce projectors Γ± = 1

2 (1 ± ΓrΓtk̂ · ~Γ) and write
ψ±(r) = rd/2f(r)1/4Γ±ψ(r). Without loss of generality,
we take k1 = k and ki6=1 = 0, and take the basis

Γr =
(
−σ3 ⊗ 1 0

0 −σ3 ⊗ 1

)
, Γt =

(
iσ1 ⊗ 1 0

0 iσ1 ⊗ 1

)
,

Γ1 =
(
−σ2 ⊗ 1 0

0 σ2 ⊗ 1

)
. (4)

One then finds

(
r2

L2

√
f(r) ∂r +

r

L
mσ3

)
ψ± =

[
iσ2√
f(r)

[
ω + µq

(
1− rd−2

0

rd−2

)]
−

(
µp
rd−2
0

rd−2
± k

)
σ1

]
ψ±. (5)

We see that the principle effect of the Pauli coupling is
to modify the appearance of k in the equation of motion.
As we will explain below, this feature can lead to a gap
in the spectral density.

To see the effects more clearly, consider the solutions of
the Dirac equations (5) in the two (asymptotic and near
horizon) regimes. Asymptotically, the solutions behave
as

ψ±(r, ω, k) = a±(ω, k) rmL
(

0
1

)
+ b±(ω, k) r−mL

(
1
0

)
.(6)

The effect of p asymptotically is to modify the subleading
terms. In this paper, we take m ∈ [0, 1

2 ) and consider a±
to be the sources (conventional quantization). Having
chosen in-falling boundary condition near the horizon,
the retarded correlator is then of the form

GR(ω, k) =
(
G+(ω, k)1 0

0 G−(ω, k)1

)
, (7)

with G±(ω, k) = b±(ω, k)/a±(ω, k). Note that the Dirac
equations (5) imply G+(ω, k) = G−(ω,−k). In this note,
we consider the extremal case (zero temperature). When
the background is extremal, f(r) has a double zero at the

horizon, and this fact renders the limit ω → 0 of the Dirac
equations (5) near the horizon subtle. To take care of
the subtlety, one realizes [4, 22] that near the horizon (in
which the geometry approaches AdS2×R2 for T = 0) the
equations for ψ± in (5) organize themselves as functions
of ζ = ωL2

2/(r − r0) with L2 = L/
√
d(d− 1) being the

radius of AdS2. The coordinate ζ is the suitable radial
coordinate for the AdS2 part of the near horizon region,
and in this region, we can write ψ± in terms of ζ and
expand in powers of ω as follows

ψI±(ζ) = ψ
(0)
I±(ζ) + ω ψ

(1)
I±(ζ) + ω2ψ

(2)
I±(ζ) + · · · . (8)

Now, substituting (8) into (5), we find that to leading
order

ψ
(0)′′
I± (ζ) =

L2

ζ

[
mσ3 +

(
cd
p

L
± kL

r0

)
σ1

]
ψ

(0)
I±(ζ)

− iσ2

(
1 +

qed
ζ

)
ψ

(0)
I±(ζ), (9)

where ed = 1/
√

2d(d− 1) and cd = 1/ [(2d− 4)ed].
Equations (9) are identical to the equations of motion
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FIG. 1. ImG−(ω, k) for p = 0 and p = 4.5. A gap is clearly visible around ω = 0 in the second plot. We show just G−(ω, k); G+(ω, k)
can be recovered using the relation G+(ω, k) = G−(ω,−k) implied by the Dirac equation. We have set L = r0 = 1.

for massive spinor fields [4] with masses (m, m̃+) and
(m, m̃−) in AdS2, where m̃± are time-reversal violating
mass terms, with the identification

m̃± = cd
p

L
± kL

r0
. (10)

Thus, ψ(0)
I±(ζ) are dual to spinor operators O± in the IR

CFT with conformal dimensions δ± = ν± + 1
2 where

ν± =
√
m2
k±L

2
2 − q2e2d − iε, m

2
k±= m2+

(
cd
p

L
± kL

r0

)2

.(11)

We see that turning on p modifies the scaling in the in-
frared in an important way – effectively, the momentum
is pushed up or down by p.

In what follows, we will numerically solve the Dirac
equations (5) for generic ω and k. It is convenient to write
ψT± = (β±, α±) and define ξ± = β±/α±, in terms of which
the Dirac equations (5) then reduce to flow equations

r2

L2

√
f(r)∂rξ± = −2m

r

L
ξ±

+ [v−(r)∓ k] + [v+(r)± k] ξ2±, (12)

where

v±(r) =
1√
f(r)

[
ω + µq

(
1− rd−2

0

rd−2

)]
± µp

(r0
r

)d−2

.

Expressed in terms of ξ±, the matrix of Green functions
(7) becomes

GR(ω, k) = lim
ε→0

ε−2mL

(
ξ+ 1 0

0 ξ− 1

) ∣∣∣
r= 1

ε

, (13)

where one is instructed to pick the finite terms as ε→ 0.
We focus on the d = 3 case and consider the extremal

RN-AdS4 background (for which Q2 = 3). Thus, we
have a (2+1)-dimensional boundary theory at zero tem-
perature and finite charge density. Our results below are
easily carried over to higher dimensions. We take m = 0,
so that the scaling dimension of the boundary theory
fermion operator is ∆ψ = 3/2. Also, in what follows, we
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FIG. 2. Figure 2(a) shows A(ω, k) as a function of ω for sample
values of k ∈ [0.1, 3.2] for p = 0. k = kF ' 0.92 for the peak at
ω = 0. Figure 2(b) shows the same plot but for p = 4.5. The gap
around ω = 0 persists for all values of k.

set q = 1 as we vary p. The effect of non-zero p for other
values of the parameters m and q will be discussed else-
where. To compute the retarded Green function (and
hence the spectral density) of the dual fermionic oper-
ator one imposes an in-falling boundary condition near
the horizon for ψ± [23]. In terms of ξ±, the in-falling
boundary condition reads (for ω 6= 0) ξ±(r0, ω, k) = i.
We can now numerically integrate the flow equations (12)
and read off the asymptotic values of ψ± from which the
matrix of retarded Green functions is easily computed
using (13). The quantity of interest for us is the fermion
spectral function which, up to normalization, is given by
A(ω, k) = Im [TrGR(ω, k)]. We will also be interested in
the density of states A(ω), which is given by the integral
of A(ω, k) over k.

The plots in Figure 1 show ImG−(ω, k) for p = 0 and
p = 4.5. The left plot has p = 0, analyzed previously in
[2]: the quasi-particle-like peak represents a Fermi sur-
face (kF ' ±0.92) where the excitations near the surface
are of non-Fermi liquid type. The right plot, for which
p = 4.5, clearly shows a gap around ω = 0. In Figure 2,
we plot A(ω, k) for p = 0 and p = 4.5 for sample values
of k. Figure 2(b) emphasizes that the gap in the spec-
tral density exists for all k. In Figure 3, we show the
density of states near the chemical potential for various
values of p. Our numerical computations indicate that
the onset of the gap is near p = 4. Finally, in Figure
4, we plot the width of the gap ∆ versus p. What
we see from the numerical results is the following. For
small p, the dominant feature of the spectral density is
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FIG. 3. A(ω) for p = 0 (dotted), 2 (dashed), 4 (solid) and 6
(large dashed). The onset of the gap is at p ' 4. The inset shows
A(ω, p = 6)−A(ω, p = 0) as a function of ω.
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FIG. 4. The width ∆ (in units of µ) of the dynamically generated
gap as a function of p.

the well-known Fermi peak at k = kF . As p increases,
the intensity of this peak degrades, and spectral density
begins to appear at negative ω. We will refer to this as
the lower band. At a critical value pcrit., a gap separating
the lower band from the original (upper) band emerges,
for all k. As p increases further, this gap widens, and
peaks begin to appear in the lower band. The difference
between A(ω, p = 0 and A(ω, p = 6) is shown in the
inset of Fig. 3. This illustrates clearly that the gap is
accompanied by transfer of spectral weight over all en-
ergy scales, not just on the order of the gap as typified
by systems in which a continuous symmetry is broken for
example BCS superconductors.

The behavior for p > pcrit. strongly reminds us of the

Mott gap in a half-filled band in which no continuous
symmetry is broken in the formation of the gap. This
would naively suggest that p plays the role of the dimen-
sionless interaction strength, U/t, in the Hubbard model.
However, in the present work lowering p not only closes
the gap but also shifts spectral weight from the upper to
the lower band (Fig. 3 inset). In the Hubbard model,
it is the doping that leads to spectral weight transfer.
Hence, the parameter p seems to, in terms of the Hub-
bard model, mimic the combined effects of doping and
interaction strength. It would be interesting to deter-
mine (but is beyond the scope of this discussion) if a
condensate violating some discrete symmetry is present
when ∆ 6= 0. Note however, that such a transition is ex-
pected to only involve energy scales O(∆), in contrast to
the re-distributions of the spectral weight on all energy
scales seen in Figure 3.

Finally, it is important to appreciate the vagaries of
holographic studies such as this one. We are not claim-
ing that turning on the Pauli coupling to a probe fermion
opens up a gap in charge transport. Indeed, because
we are not considering back reaction in any sense, one
expects that charge current correlators are unmodified.
The probe fermion makes a negligible contribution to
charge transport in the dual field theory. However, trans-
port of the dual fermion operator is gapped.
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