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We have carried out a detailed study of the motion of particles driven by a constant external
force over a landscape consisting of a periodic potential corrugated by a small amount of spatial
disorder. We observe anomalous behavior in the form of subdiffusion and superdiffusion and even
subtransport over very long time scales. Recent studies of transport over slightly random landscapes
have focused only on parameters leading to normal behavior, and while enhanced diffusion has been
identified when the external force approaches the critical value associated with the transition from
locked to running solutions, the regime of anomalous behavior had not been recognized. We provide
a qualitative explanation for the origin of these anomalies, and make connections with a continuous
time random walk (CTRW) approach.
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Solid state surfaces frequently present periodic poten-
tials marred by some disorder. Herein we show that an
overdamped particle moving over such a potential in one
dimension (1D) may exhibit anomalous behavior in the
form of superdiffusion, subdiffusion, and even subtrans-
port. Although we cannot prove that these are steady
state regimes, our numerical simulation data show them
to be present over time spans of several orders of magni-
tude.

That diffusion of particles over both periodic and ran-
dom surfaces lead to some forms of anomalous behavior
is of course well known and continues to attract a great
deal of attention [1–10]. In periodic potentials with low
friction, extremely long (in time) dispersionless transport
regimes can be observed when forces exceed a critical
force [6]. Moreover, in these same systems, in both over-
damped and underdamped regimes, the diffusion coeffi-
cient versus the applied force presents a pronounced peak
around the critical force that allows the coexistence of
locked and running states [1, 4–7]. The enhancement is
quantitatively larger than the free particle diffusion coef-
ficient. This behavior has been observed experimentally
when tracking the motion of colloidal spheres through a
periodic potential created with optical vortex traps [9].

The enhancement of the diffusion coefficient is even
more pronounced when disorder is also present [9]. This
phenomenon has been tested by numerical simulations on
a surface in which a small amount of spatial disorder in
the form of a random potential is added to the periodic
potential [10]. Dramatic diffusive enhancement occurs
even for very small amounts of disorder, e.g., when the
amplitude of the random contribution of the potential
relative to that of the periodic distribution is as small as
∼ 5%.

Although dramatic, diffusive enhancement turns out
to be only a limited aspect of the story. Here we present
a range of additional anomalous transport and diffusion
phenomena arising from weak disorder that have not
been previously noted. Our model is inspired by [9, 10].

We consider the overdamped motion of identical non-
interacting Brownian particles moving in a 1D poten-
tial landscape U(x) following the Langevin equation
γẋ(t) = −U ′(x) + F + ξ(t). Here x is the position of
the particle, t denotes time, γ is the dissipation param-
eter, F is the applied force, and ξ(t) is Gaussian ther-
mal noise at temperature T . The correlation function
of the noise obeys the fluctuation-dissipation relation
〈ξ(t) ξ(t′)〉 = 2γkBTδ(t − t′). The potential U(x) con-
sists of a periodic part, Vp(x) = V0 cos (2πx/λp), and a
Gaussian spatially random contribution Vr(x) with cor-
relation function

gr(x) ≡ 〈Vr(x)Vr(0)〉 =
V 2

0

2
exp

(

−
2π2x2

l2r

)

. (1)

The relative contributions are determined by the param-
eter σ ∈ [0, 1] in the combination U(x) = (1− σ)Vp(x) +
σVr(x). Furthermore, we have chosen the potential cor-
relations gr(x) and gp(x) = (V 2

0 /2) cos (2πx/λp) to be
equal at x = 0, gp(0) = gr(0). This ensures that the
total potential amplitude is of order V0 independently of
σ. Also, with the particular choice lr = λp the two cor-
relation functions are identical up to second order in a
Taylor expansion.

In terms of the spatial variable z = 2πx/λp and the
temporal variable τ = [(2π)2V0/γλ2

p]t, the equation of
motion can be reduced into dimensionless form,

ż = (1 − σ)fp(z) + (σ/λ)fr(z/λ) + F + η(τ), (2)
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where fp and fr are the dimensionless forces arising from
Vp and Vr respectively, and η is the dimensionless noise.
The dimensionless parameters are

λ =
lr
λp

; F =
λpF

2πV0
; T =

kBT

V0
. (3)

Throughout this work we set T = 0.01. and λp = 2π.
Variations in T do not lead to any additional phe-
nomenology. The specific choice of λp = 2π is only im-
portant as a reference value. In these variables a decrease
of λ even for fixed σ leads to an increase in the relative
contribution of the random force.
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FIG. 1. (Color online) Upper panel: Barriers h of one realiza-
tion of the total potential in a spatial domain of ∼ 32 periods
with λ = 0.5 and F = 1. Middle and lower panels: Numer-
ical data for 50 different disordered potentials and N = 100
particles in each potential. Left panels: v(τ ). Right panels:
D(τ ). Middle panels: λ = 1. Lower panels: λ = 2π (regime
of Ref. [10]). σ = 0.05, τ = 104. Each color corresponds to an
average over 100 particles for a particular random potential.

We have carried out numerical simulations of Eq. (2)
over a large number (100) of particle trajectories and
a large number of realizations of the random potential
contribution (typically 50-100) in order to calculate the
velocity and diffusion coefficient using the prescriptions

v(τ) =
〈z(τ)〉

τ
, D(τ) =

〈z2(τ)〉 − 〈z(τ)〉2

2τ
. (4)

The brackets 〈· · · 〉 denote averages over many trajecto-
ries. We have ascertained that increasing the number of
particle trajectories does not change the results. The nu-
merical procedures are entirely standard. We show that
the usual assumption that stationary values are reached
at long times is at the very least questionable. Repre-
sentative outcomes of this procedure are shown in the
middle and lower panels of Fig. 1. These outcomes qual-
itatively capture an unanticipated range of behaviors in
the right middle panel.

The velocity reaches a well-defined stationary value for
any value of the force in the figure (left panels), even in
the regime of sharp increase around F = 1. Also, for the
parameters used in Ref. [10], we see the enhancement of
the (well defined) diffusion coefficient around the critical
deterministic force Fc = 1 (lower right panel). However,
entirely different behavior is now seen in the middle right
panel of the figure, which shows huge variations in the
diffusion coefficient. Note that these variations extend
over orders of magnitude. The question then is - what
leads to these variations and why were they not identified
in Ref. [10]?

The answer lies in the choice of the correlation length
of the random potential. In [10] the correlation length is
much greater than a single period of the periodic poten-
tial, that is, the randomness is very smooth. However,
entirely different behavior is seen when the random po-
tential is more corrugated, as it is in our case. We see
that the traditional diffusion coefficient is no longer well-
defined in this regime but instead presents very strong
fluctuations around its peak value, making a precise esti-
mation of D questionable. Note also the very large scale
differences of the middle and lower right panels of the fig-
ure. These are signatures of anomalous behavior. While
it is not clear whether a well-defined value of D would be
obtained at much longer times beyond our computational
reach, we have repeated these calculations for many more
particles and potential realizations and continue to find
this variability.

To understand the origin of these anomalies, in the
upper panel of Fig. 1 we draw the effective barriers h ex-
tracted from the total potential U(z)−Fz for a particular
realization of the random potential. The heights and lo-
cations of the barriers are random, and most of them
exceed the thermal energy (dashed line). Smaller values
of λ lead to a greater number and height of the barriers.
As a particle moves along such a landscape, it must over-
come these barriers, some of which are extremely high.
Thus, even with a small amount of disorder the parti-
cle motion is dominated by random waiting times due
to the dispersion of the barrier heights, and a few long
waiting times that greatly influence the outcome. We go
on to show that the diffusion anomaly in Fig. 1 is a con-
sequence of such landscapes and that it is qualitatively
different from a simple large enhancement of the diffu-
sion coefficient. In fact, strong fluctuations in the usual
ensemble calculation of the diffusion coefficient indicate
that our system is exhibiting behavior reminiscent of ag-
ing or of weak ergodicity breaking [11–13] over the time
scales of our simulations. We approach the problem with
this observation in mind.

Our numerical results are collected as follows. Parti-
cles are initially located at random positions uniformly
distributed over a region of about 1000 sites, and for each
we observe the times tp that it takes a single particle to
cover the underlying spatial period λp over the course of
its trajectory over a long time. We collect these statistics
for many particles and many realizations of the random
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potential. If the motion of the particles is “normal” then
following the reasoning in [1, 8] and also used in [10]
leads to the average velocity and diffusion coefficient ex-
pressions [14]

v =
λp

〈tp〉
, D =

λ2
p

2

〈∆2tp〉

〈tp〉3
. (5)

Here 〈tp〉 is the average of the tp over all trajectories,
particles, and potential realizations and 〈∆2tp〉 is their
dispersion about the average. These expressions are only
well defined if the first and second moments of the distri-
bution of the tp are finite. We present numerical evidence
that indicates that in the presence of a small amount of
disorder in the potential the distribution P (tp) of the
time tp to cover a single period can have a power-law tail
for long stretches of time,

P (tp) ∼ t−β
p . (6)

This behavior leads to the observed anomalies if β is suf-
ficiently small. For β > 3, the first and second moments
are finite, so transport and diffusion are normal. In the
range 2 < β < 3, the first moment is finite but the sec-
ond moment diverges. This leads to a finite average ve-
locity v, but the diffusion coefficient as defined in Eq. (5)
diverges as D ∼ t3−β (superdiffusion). In the interval
3/2 < β < 2 the first moment diverges and the average
velocity thus vanishes as v ∼ tβ−2 (subtransport). The
second moment again diverges, leading to D ∼ t2β−3 (su-
perdiffusion). For 1 < β < 3/2 we again have substrans-
port (v ∼ tβ−2), the diffusion coefficient decays to zero
(D ∼ t2β−3, subdiffusion), and the particle remains ex-
tremely localized around its point of origin. We observe
all of these behaviors.

To obtain values of β, we focus on the tails of the dis-
tribution. If they follow a power law, exponents β are
estimated, as depicted in Fig. 2. In the upper panel of
Table I, we present a set of typical results of simulations.
In many cases, a value β < 3 associated with anomalous
behavior is found. Table I also shows that a lower level
of disorder (∼ 2%) leads to higher exponents. For com-
parison with Ref. [10], we also show the case λ = 2π for a
5% level of disorder. We observe what we expected from
Eq. (2) when λ increases, that is, the effect of the ran-
dom part of the potential is greatly muted. This implies
that most of the exponents are in the range β > 3 (nor-
mal behavior) for the range of forces selected, which ex-
plains why the anomalies explored herein were not found
in Ref. [10]. Much smaller forces would need to be ex-
plored to find robust anomalous behavior there. For our
parameter choices, using λ as a control parameter (keep-
ing F fixed) also leads to β values covering all the possi-
ble regimes (see bottom panel of Table I). An important
caveat that is apparent in the dispersion of data for large
values of tp in Fig. 2 is the sensitivity of the estimated β
to the length of the simulations since the simulation time
limits the values of tp that can be probed.
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FIG. 2. (Color online) Log-log plot of the time distribution
for different values of λ. (a) λ = 0.1 (β = 1.4), (b) λ = 0.4
(β = 1.8), (c) λ = 0.8 (β = 2.6), and (d) λ = 2π (β =
6.9). The parameter values are F = 1 and σ = 0.05. Inset:
Log plot of P (tp) for cases (c) and (d). Also shown is the
exponential distribution for a purely periodic potential with
the same force (green online).Time τ ≥ 104 as needed to
obtain reliable histograms.

H
H

H
HH

σ

F
0.82 0.92 0.95 0.98 1.0 1.02 1.05

0.05 (λ = 1) 1.1 1.7 2.2 2.7 2.9 3.6 4.8

0.02 (λ = 1) 1.4 2.3 3.2 4.3 4.6 > 5 > 5

0.05 (λ = 2π) 2.2 3.0 > 5 > 5 > 5 > 5 > 5

H
H

H
HH

σ

λ
0.1 0.4 0.6 0.8 1.2 1.4 2π

0.05 (F = 1) 1.3 1.7 2.1 2.5 3.5 4.0 > 5

TABLE I. Upper panel: Exponents β for different values of
the force and two values of σ and λ. Bottom panel: Exponents
β for different values of λ, with F = 1 and σ = 0.05

As the value of β increases with increasing λ, the shape
of the distribution P (tp), particularly its tail, changes
from a power law form to the more typical exponential
associated with normal behavior. This occurs because
changing λ induces a change of the effective contribution
of the random part of the potential. Earlier we pointed
out that increasing λ diminishes the effects of the disor-
der. In fact, case (d) of Fig. 2 is no longer a power law,
as shown in the inset of the figure, but is instead bet-
ter described as an exponential, characteristic of normal
diffusive behavior.

Finally, temporal evolutions of the velocity and the dif-
fusion coefficient for the four different regimes of behavior
are shown in Fig. 3. The solid lines are trajectory sim-
ulation results while the circles and dashed lines are the
predictions in the text following Eq. (6). Qualitatively,
the subtransport regimes of the two cases with the lowest
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FIG. 3. (Color online) Log-log plot of the time evolution of the
velocity (left) and of the diffusion coefficient (right) for differ-
ent values of λ. Left panel bottom to top: λ = 0.1, 0.4, 0.8,
and 2π. Right panel bottom to top: λ = 0.1, 2π, 0.4, and 0.8.
The solid curves are obtained from trajectory simulations.
The circles and dashed curves are the predictions in the text
following Eq. (6). Parameter values: σ = 0.05, F = 1. Num-
ber of potential realizations: 100, except for λ = 2π where 20
realizations are sufficient.

values of λ are clearly seen, as are the subdiffusive and
superdiffusive behaviors of the diffusion coefficient.

In conclusion, we have carried out a detailed numeri-
cal study of the motion of particles driven by a constant
external force over a one-dimensional landscape consist-
ing of a periodic potential modified by a small amount
of spatial disorder. We have identified a set of dramatic
anomalous behaviors as diverse as subtransport, subd-
iffusion, and superdiffusion on the same surfaces as the
driving force or the random corrugation length is varied.
These behaviors are observed over very long time scales.

Their asymptotic persistence behavior is not known. Ear-
lier studies have focused only on parameters of normal
behavior [9, 10], and while they have identified the oc-
currence of enhanced diffusion when the external force
approaches the critical value associated with the tran-
sition from locked to running solutions, they have not
recognized the regime of anomalous behavior.

The anomalous behaviors that we observe are similar
to those associated with continuous time random walk
(CTRW) models with a priori power law waiting time
distributions [14]. Connections between ordinary random
walks in random environments and CTRWs in ordered
environments are abundant in the literature [12, 15], but
they are typically confined to master equation models
with random transition rates. Our case is different in
that we deal with Langevin dynamics. We have arrived
at CTRW-like dynamics from an over-damped Langevin
model that is particularly useful and used for the discus-
sion of diffusion of particles on surfaces [1–10]. We have
found anomalous behavior when a periodic potential is
slightly corrugated over short distances. Earlier studies
had focused on regimes of very long smooth variation of
the random contribution to the potential. Experiments
with more corrugated surfaces than have been used so
far [9] are clearly desirable to see the effects that we have
identified.

It would of course also be desirable to extend these
studies to higher dimensions and to gain further insight
into the asymptotic behavior. Such work has recently
been presented for the case of a piecewise linear random
potential [16], but seems not yet to be available for the
more realistic potentials considered here.
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