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We derive a quantum Cramér-Rao bound (QCRB) on the error of estimating a time-changing
signal. The QCRB provides a fundamental limit to the performance of general quantum sensors,
such as gravitational-wave detectors, force sensors, and atomic magnetometers. We apply the QCRB
to the problem of force estimation via continuous monitoring of the position of a harmonic oscillator,
in which case the QCRB takes the form of a spectral uncertainty principle. The bound on the force-
estimation error can be achieved by implementing quantum noise cancellation in the experimental
setup and applying smoothing to the observations.
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The accuracy of any sensor is limited by noise. To
quantify the potential performance of a sensor, it is often
useful to compute a lower bound to the error in the esti-
mation of the signal of interest. One of the most widely
used bounds is the Cramér-Rao bound (CRB), which lim-
its the mean-square error in parameter estimation [1].

The development of quantum technology highlights the
question of how quantum mechanics impacts the per-
formance of sensors. Helstrom formulated a quantum

Cramér-Rao bound (QCRB) [2], which stipulates that
the minimum estimation error is inversely proportional
to a property of the sensor known as the quantum Fisher
information. The QCRB is central to quantum sen-
sor design in the burgeoning field of quantum metrol-
ogy [3, 4] for several reasons. It allows one to determine
whether the fundamental sensitivity of a sensor design
meets the requirements of an application, provides a cri-
terion against which the optimality of quantum sensing
schemes can be tested, and motivates improvements of
schemes that are suboptimal. For sensors near the fun-
damental limit, the QCRB can also be used to quantify
the trade-off between sensing accuracy and physical re-
sources of the sensor, so that efficient ways of improving
sensitivity can be identified.

Most prior work on the QCRB considered estimation
of one or a few fixed parameters. Yet, in most sensing ap-
plications, such as force sensing and magnetometry, the
signal of interest is changing in time. This time-changing
signal, which we call a waveform, is coupled continuously
to the sensor, and continuous measurements on the sensor
are used to extract information about the waveform [5–
7]. Here we derive the QCRB for waveform estimation—
the first such derivation to our knowledge—allowing for
any quantum measurement protocol, including sequen-
tial, discrete or continuous measurements.

Previous work on the QCRB generally did not take
into account prior information, but for the task of esti-
mating a waveform, which often depends on an infinite
number of unknown parameters, parameter estimation

techniques no longer suffice and prior information is re-
quired to make the problem well defined [1]. The prior
information might, for example, restrict the signal to a
finite bandwidth, making integrals over frequency finite
that otherwise would diverge. Thus a crucial feature of
our QCRB is the inclusion of prior waveform information.

Our result provides a rigorous criterion against which
the optimality of design, control, and estimation strate-
gies for quantum sensors, such as gravitational-wave de-
tectors, force sensors, and atomic magnetometers, can be
tested. As an example, we calculate the QCRB on the
error of force estimation via continuous position measure-
ments of a harmonic oscillator, in which case the bound
takes the form of a spectral uncertainty principle. We
show that the bound can be achieved by implementing
quantum noise cancellation (QNC) to remove the back-
action noise from the observations [8] and applying the
estimation technique of quantum smoothing [7] to the ob-
servations. This proves the optimality of such control and
estimation techniques for force sensing and establishes
our QCRB as the fundamental limit to force sensing.

Let x(t) denote the classical waveform to be estimated.
For simplicity, we assume x(t) to be a scalar function;
generalization to multiple processes is straightforward.
We discretize time as tj = t0 + jδt, j = 0, 1, . . . , J , and
assume that δt is small enough that we can treat x(t)
as piecewise-constant, i.e., x(t) = xj for tj ≤ t < tj+1.
The prior probability density P [x] for the vector x ≡
(xJ−1, . . . , x0)

T characterizes what is known or assumed
about the waveform prior to the measurements. For a
vector of observations y ≡ (yN−1, . . . , y1, y0)

T made any
time during the interval t0 < t ≤ tJ , we define a condi-
tional probability density P [y|x]. The joint probability
density is P [y, x] = P [y|x]P [x]. Finally, we define the es-
timate of xj as x̃j [y] and the estimate bias, given signal x,

as
∫

Dy (x̃j − xj)P [y|x] ≡ bj [x], where Dy ≡
∏N−1

n=0 dyn.

Multiplying both sides of bj[x] by P [x], differentiating
with respect to xk, and then integrating over all x using
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Dx ≡
∏J−1

j=0 dxj , we obtain

−δjk +

∫

DxDy (x̃j − xj)
∂P [y, x]

∂xk

=

∫

Dx
∂

∂xk

(

bj [x]P [x]
)

= 0 , (1)

where the final equality assumes bj[x]P [x]|xk=±∞ = 0.
This assumption, also used in the proof of the classi-
cal CRB [1], is satisfied as long as the prior density ap-
proaches zero at the infinite endpoints (as it must for any
probability density) and the bias there is not infinite.

Quantum mechanics enters this description, which till
now is classical, by determining the conditional probabil-
ity of the observations. Given a quantum system, we can
describe any measurement protocol, including sequential
measurements and excess decoherence, during the inter-
val t0 ≤ t < tJ by introducing appropriate ancillae, in
accord with the Kraus representation theorem [3, 9, 10].
This also accounts for any feedback during the interval,
based on the measurement outcomes, because the princi-
ple of deferred measurement [10] allows one to put off the
measurements on the ancillae till time tJ ; measurement-
based feedback is replaced by controlled unitaries prior
to the measurements, as schematically shown in Fig. 1.

FIG. 1: Any quantum dynamics and sequential measurements
described by completely positive (CP) maps, including feed-
back based on measurement outcomes, as illustrated in (a),
can be reproduced by unitary evolution of an enlarged system
that includes appropriate ancillae, coherent controlled uni-
taries, and deferred measurements of the ancillae, as shown
in (b).

In this approach, the overall system dynamics is de-
scribed by unitary evolution of the enlarged system;
the conditional probability of observations is given by
P [y|x] = tr

(

E[y]ρx

)

, where ρx is the density operator of
the enlarged system at time tJ , conditioned upon x, and
E[y] is the positive-operator-valued measure (POVM)
that describes the (deferred) measurements up to time tJ .
We denote expectation values with respect to ρx by angle
brackets subscripted by x, so that 〈E[y]〉x ≡ tr

(

E[y]ρx

)

.
Continuous measurements can be modeled as the limit of
a sequence of infinitesimally weak measurements [3].

We now follow a procedure similar to the one used
by Helstrom [2] to derive the QCRB. We introduce an

operator Qk that satisfies ∂ρx/∂xk = (Qkρx + ρxQ†
k)/2.

Unlike Helstrom, we do not require Qk to be Hermitian.
Note that the vanishing trace of ∂ρx/∂xk in the definition
of Qk implies that Re〈Qk〉x = 0.

It is convenient to incorporate the prior information
by working in terms of a density operator ρ[x] ≡ ρxP [x]
in a hybrid quantum-classical space and introducing
an operator Lk = Qk + ∂ lnP [x]/∂xk, which satisfies

∂ρ[x]/∂xk = (Lk[x]ρ[x] + ρ[x]L†
k[x])/2. In terms of Lk,

Eq. (1) takes the form that we use to derive the QCRB:

δjk = Re

∫

DxDy (x̃j − xj) tr
(

E[y]Lk[x]ρ[x]
)

. (2)

Multiplying Eq. (2) by ujvk, where uj and vk are the
components of arbitrary real column vectors u and v,
and then summing over all j and k, we obtain

vT u =
∑

j

ujvj = Re

∫

DxDy tr
(

A†B
)

, (3)

where A† ≡
∑

k vk

√

E[y]Lk

√

ρ[x], B ≡
∑

j uj(x̃j −

xj)
√

ρ[x]
√

E[y], and T denotes transposition. It follows
from Eq. (3) that

(vT u)2 ≤

∣

∣

∣

∣

∫

DxDy tr
(

A†B
)

∣

∣

∣

∣

2

≤

∫

DxDy tr(A†A)

∫

DxDy tr(B†B) , (4)

where the second inequality is the Schwarz inequality.
The second integral in Eq. (4) is

∫

DxDy tr(B†B) =
uT Σ u, where

Σjk ≡

∫

DxDy P [x, y](x̃j − xj)(x̃k − xk) (5)

is the estimation-error covariance matrix. The first inte-
gral in Eq. (4) is, using the completeness of the POVM,
∫

DxDy tr(A†A) = vT Fv, where F is a (real, symmet-
ric) Fisher-information matrix,

Fjk ≡
1

2

∫

DxP [x] tr
(

(L†
jLk + L†

kLj)ρx

)

. (6)

Since Re〈Qk〉x = 0, F separates neatly into a quantum
and a classical, prior-information component, i.e., F =
F (Q) + F (C), where

F
(Q)
jk =

1

2

∫

DxP [x] tr
(

(Q†
jQk + Q†

kQj)ρx

)

(7)

F
(C)
jk =

∫

DxP [x]
∂ lnP [x]

∂xj

∂ lnP [x]

∂xk

. (8)

When these results are substituted into Eq. (4), we find
that (vT Fv)(uT Σu) ≥ (vT u)(uT v). Setting v = F−1u
implies that uT (Σ−F−1)u ≥ 0 for arbitrary real vectors
u. Since Σ−F−1 is real and symmetric, this implies that
Σ − F−1 is positive-semidefinite; the matrix inequality

Σ ≥ F−1 (9)
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is the QCRB in its most general form. To use a CRB
in practice, it is customary to define a non-negative,
quadratic cost function C ≡ tr(ΛT Σ) using a positive-
semidefinite (Hermitian) cost matrix Λ suited to the ap-
plication [1, 2]. The matrix QCRB is equivalent to a
lower bound, C ≥ tr(ΛT F−1), on all such cost functions.

To calculate the QCRB, we must be more specific
about the evolution of the enlarged quantum system.
The Hamiltonian that governs overall system dynam-
ics over the interval tj ≤ t ≤ tj+1, of duration δt,
is Hj(xj), with corresponding evolution operator Uj =
exp[−iHj(xj)δt/~]. We have ∂Uj/∂xj = Uj(−ihj δt/~),
where hj ≡ ∂Hj/∂xj. Let Ukj ≡ Uk−1 · · ·Uj denote the
evolution operator over the interval tj ≤ t ≤ tk. The
density operator ρx is related to the initial density op-
erator ρ0 by ρx = UJ0ρ0U

†
J0, which gives ∂ρx/∂xk =

−i[Mk, ρx], where

Mk ≡ i
∂UJ0

∂xk

U †
J0 =

δt

~
UJkhkU †

Jk =
δt

~
UJ0ĥkU †

J0 , (10)

with ĥk ≡ U †
k0hkUk0 = h(tk) being the Heisenberg-

picture version of hk. An obvious choice for Qk is the
anti-Hermitian Qk = −2i∆Mk, where ∆Mk ≡ Mk −
〈Mk〉x. The quantum part of the Fisher matrix then be-
comes

F
(Q)
jk =

4(δt)2

~2

∫

DxP [x]
1

2
tr

(

(∆ĥj∆ĥk + ∆ĥk∆ĥj)ρ0

)

,

(11)

where ∆ĥk ≡ ĥk − 〈ĥk〉0. Angle brackets with subscript
0 denote an expectation value with respect to ρ0. The
quantum Fisher information is thus a two-time covari-
ance function, averaged over P [x].

To take the continuous-time limit, we let δt → 0,
Σjk → Σ(tj , tk), Fjk/(δt)2 → F (tj , tk), and Λjk/(δt)2 →
Λ(tj , tk). The estimation-error covariance matrix be-
comes the two-time covariance function of estimation er-
ror, Σ(t, t′), and the Fisher matrix becomes F (t, t′) =
F (Q)(t, t′) + F (C)(t, t′), with

F (Q)(t, t′) =
4

~2

∫

DxP [x]

×
1

2

〈

∆h(t)∆h(t′) + ∆h(t′)∆h(t)
〉

0
, (12)

F (C)(t, t′) =

∫

DxP [x]
δ lnP [x]

δx(t)

δ lnP [x]

δx(t′)
, (13)

δ/δx(t) being the functional derivative.
In the continuous-time limit, the matrix QCRB retains

the same form as Eq. (9), where the continuous-time in-

verse is defined by
∫ tJ

t0
dt′′F (t, t′′)F−1(t′′, t′) = δ(t − t′).

The bound on a cost function becomes

C ≡

∫

dt dt′ Λ(t, t′)Σ(t, t′) ≥

∫

dt dt′ Λ(t, t′)F−1(t, t′) .

(14)

Equation (14), valid for any cost function, is the most
serviceable expression of our chief result. An important
special case is the point estimation error,

Π(t) ≡ Σ(t, t) = 〈[x̃(t) − x(t)]2〉 ≥ F−1(t, t) , (15)

where angle brackets without a subscript denote an over-
all quantum-classical average.

To illustrate the use of our QCRB, we consider the esti-
mation of a force x(t) on a quantum harmonic oscillator.
The Hamiltonian is H = p2/2m+mω2

mq2/2−qx(t), with
q being the position operator, p the momentum operator,
m the mass, and ωm the resonant frequency. In this situ-
ation, we have h(t) = ∂H(x(t))/∂x(t) = −q, which leads
to a quantum component of the Fisher information,

F (Q)(t, t′) =
4

~2

1

2

〈

∆q(t)∆q(t′) + ∆q(t′)∆q(t)
〉

0
. (16)

The further average over P [x] in Eq. (11) can be omitted
in Eq. (16) because x(t) appears linearly in q(t) and thus
drops out of ∆q(t). If we assume that x(t) is a Gaussian
process, the classical, prior-information component of the
Fisher information is the inverse of the prior two-time
covariance function of ∆x(t) [1].

We now assume that all noise processes are stationary.
For a stationary, zero-mean process f(t), the covariance
function 〈f(t)f(t′)〉 depends only on the time difference
τ = t′ − t and can be Fourier-transformed to give the
power spectral density Sf (ω) ≡

∫ ∞

−∞
dτ〈f(t)f(t+τ)〉eiωτ .

The choice Λ(t, t′) = exp[iω(t′ − t)]/(tJ − t0), together
with taking t0 → −∞ and tJ → ∞, makes C(ω) the
power spectral density of the estimation error. The
QCRB (14) then becomes a spectral uncertainty princi-

ple:

C(ω)

(

S∆q(ω) +
~

2

4S∆x(ω)

)

≥
~

2

4
. (17)

In the time-stationary case, the matrix QCRB is equiv-
alent to satisfying this spectral uncertainty principle for
all ω. A bound on the point estimation error now follows
from Π =

∫ ∞

−∞
(dω/2π)C(ω).

To proceed in our approach, we must specify the mea-
surements that extract the force information from the
oscillator and include the associated back-action. Thus
we now suppose that one performs continuous position
measurements, using, for example, a continuous opti-
cal probe. The observation process is y = q + η, and
the oscillator equations of motion are dq/dt = p/m and
dp/dt = −mω2

mq+x+ξ, where ξ is the back-action noise.
Here ξ(t) and η(t) are like the quadrature components of
an optical field, obeying the canonical commutation re-
lation [ξ(t), η(t′)] = i~δ(t − t′). We assume ξ and η have
zero mean; their spectra satisfy an uncertainty principle,
Sξ(ω)Sη(ω) ≥ ~

2/4 [3, 5].
If we introduce a small amount of damping, ∆q(t)

is the inhomogeneous solution for q(t), driven just by
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ξ(t), and becomes stationary. In the limit of negligi-
ble damping, the spectrum of ∆q becomes S∆q(ω) =
|G(ω)|2Sξ(ω), where G(ω) ≡ 1/m(ω2

m − ω2) is the os-
cillator transfer function. The spectral uncertainty prin-
ciple (17) now takes the form

C(ω)

(

|G(ω)|2Sξ(ω) +
~

2

4S∆x(ω)

)

≥
~

2

4
. (18)

The corresponding bound on point estimation error is

Π ≥

∫ ∞

−∞

dω

2π

(

4

~2
|G(ω)|2Sξ(ω) +

1

S∆x(ω)

)−1

. (19)

Notice that a bandwidth constraint on x(t) is incorpo-
rated in the prior information: S∆x(ω) goes to zero out-
side the relevant bandwidth, thus allowing C(ω) to be
zero there and making the integral (19) finite.

We can elucidate the meaning of the QCRB (19) by
considering how to estimate the force from the obser-
vations in this scenario. In the frequency domain, the
observation process y(t) reads y(ω) = G(ω)[x(ω)+z(ω)],
z being a noise term that depends on ξ and η. Using
smoothing [1, 7] to estimate x from y yields an error

Π =

∫ ∞

−∞

dω

2π

(

1

Sz(ω)
+

1

S∆x(ω)

)−1

. (20)

This is the minimum achievable error for a given noise
spectrum Sz(ω). It cannot be reached by the more well-
known technique of filtering [3], as filtering does not make
use of the entire observation record. If ξ and η are un-
correlated and quantum limited, we have

Sz(ω) =
Sη(ω)

|G(ω)|2
+ Sξ(ω) ≥

~

|G(ω)|
≡ SSQL(ω) , (21)

where the power spectrum SSQL(ω) is known as the stan-

dard quantum limit (SQL) for force detection [5].
It is now evident that to attain the QCRB (19), it

is necessary to beat the SQL. This requires evading or
tempering the effects of the back action ξ. One way
to do this is to correlate ξ and η, as was proposed
for interferometric gravitational-wave detectors by Un-
ruh [11]. An alternative is to use quantum noise cancel-
lation (QNC) [8], which has the advantage of making the
QCRB (19) achievable, as we now show. One QNC ap-
proach, discussed in [8], adds an auxiliary oscillator with
position q′ and momentum p′. One monitors continu-
ously the collective position Q = q + q′, giving a process
observable y = Q + η; the back-action force ξ acts on
P = (p+p′)/2 and thus equally, with strength ξ, on each
of the two oscillators. Suppose the auxiliary oscillator
has the same resonant frequency and equal, but opposite
mass (the negative mass can be simulated by an opti-
cal mode at the red sideband of the optical probe). The
dynamics of the collective position is then determined
by dQ/dt = δp/m and dδp/dt = −mω2

mQ + x, where

δp = p − p′. There being no back-action noise in z(t),
one easily finds that

Sz(ω) =
Sη(ω)

|G(ω)|2
≥

~
2

4Sξ(ω)

1

|G(ω)|2
, (22)

with equality for quantum-limited noise. This quantum-
noise-cancellation scheme beats the SQL and if the noise
is quantum limited, does so optimally: the smoothing
error given by Eq. (20) achieves the QCRB (19), which
implies that the spectral uncertainty principle (18) is sat-
urated. Our force-sensing QCRB, rigorously proven and
demonstrably achievable, thus serves as a fundamental
quantum limit, against which the optimality of future
force sensing schemes should be tested. More generally,
our QCRB for arbitrary cost functions (14) will find ap-
plication whenever quantum-limited estimation of tem-
porally varying waveforms is attempted.
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