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We numerically investigate deformations and normal modes of three-dimensional networks of semi-flexible

biopolymers as a function of average crosslink coordination number z and relative strength of bending and

stretching energies. Our networks consist of filaments that in equilibrium are in a state of internal stress, and

they exhibit shear rigidity below the Maxwell isostatic point. In contrast to two-dimensional networks, ours

exhibit nonaffine bending-dominated response in all rigid states, including those approaching the maximum of

z = 4 as long as bending energies are smaller than stretching ones.
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Networks of semi-flexible bio-polymers (NSFP) [1–4] are

important for determining and controlling the mechanical

properties of eukaryotic cells. Understanding their proper-

ties, in particular the relation between mechanical response

and network architecture, has been a major goal of biophysics

research. NSFPs consist of long filaments of average length L

linked two at a time by crosslinks so that each is connected to

at most four others [5–8]. The crosslinks we consider, which

we will refer to as nodes, allow free rotations of filaments rel-

ative to each other. They divide the filaments into a series

of segments, of average length lc, that give rise to a central

force between nodes determined by the force-extension curve

of a semi-flexible polymer. In addition, bending forces favor

parallel alignment of contiguous segments on the same fila-

ment meeting at a common node. The mechanical properties

of NSFPs depend on their connectivity, parameterized by the

average coordination number z of their nodes or by the ratio

L/lc, on their interaction parameters, and on their architecture.

Networks of semi-flexible polymers have much in common

with those that occur in network glasses [9–11]. They are

both continuous random networks [12]; they both have nodes

with maximum coordination number 4; and they are both sta-

bilized below the central-force rigidity threshold by bending

forces, between all bonds in the latter but only between seg-

ments in the same filament in the former. Careful mode count-

ing and study of the mode structure of network glasses [9–11]

and other random systems such as hard spheres near the jam-

ming transition [13–15] have provided fundamental insight

into the physics of these systems. They have also been used in

the study of two dimensional NSFPs [16, 17]. In this article,

we undertake a similar study of simulated three-dimensional

NSFPs [18] as a function of their connectivity and interaction

parameters, and we analyze the zero-frequency shear modulus

and the mode structure as a function of these parameters.

A system of nodes and links in d dimensions has a trivial set

of zero-frequency modes of rigid translations and rotations.

If the system has additional internal zero-frequency “floppy”

modes [10], it is mechanically unstable, though it is often sta-

ble with respect to macroscopic stress. As Maxwell [20] first

showed, in an unstressed system a global estimate of the num-

ber of floppy modes N0 can be calculated by subtracting the

number of constraints Nc from the number of degrees of free-

dom, N0 = dN −Nc (neglecting the sub-extensive trivial zero

modes), where N is the number of nodes. In the following we

consider the forces as constraints. We define Nk as the num-

ber of nodes on filament k and NF as the number of filaments,

and in our simulations we explicitly remove all disconnected

clusters and all filaments with Nk = 0 and Nk = 1. Each node

is shared by exactly two filaments, and N = 1
2 ∑Nk. In our

system, each of the Nk − 1 segments on a filament provides

one constraint for a total of Ns = ∑k>1(Nk − 1) = 2N −NF

compressional constraints. Because segments on a single fila-

ment that meet at a common node are not parallel in our sys-

tem, each of the Nk − 2 nodes on filament k not connected

to a dangling end contributes a single constraint for a to-

tal of Nb = ∑k>1(Nk − 2) = 2N − 2NF bending constraints.

Thus, N0 = dN −Ns −Nb = 3NF − (4− d)N. We define the

average coordination z ≡ 2Ns/N. Then NF/N = 2− (z/2),
N0 = N[2 + d − (3/2)z], and the critical coordination number

below which floppy modes first appears is zc = (2/3)(2 + d).
In 2d zc = 8/3, and in 3d, zc = 10/3, a value that, as expected,

is greater than the value 12/5 in 3d network glasses [10]. It

is common practice to characterize NSFPs by L/lc rather than

by z. In our case, dangling ends each contribute an average of

lc/2 to the length of a segment. Thus L/lc is equal to the num-

ber of nodes per polymer, ∑k Nk/NF = 2N/NF = (1− 1
4
z)−1,

and (L/lc)c = 6 in 3d.

We do not represent all monomers explicitly but rather in-

tegrate out all degrees of freedom of the polymers between

nodes. Since we consider the small-strain behavior of the

filaments, we use the linear approximation to the non-linear

force-extension curve of semi-flexible polymers. Our Hamil-

tonian is thus a sum over all segment free energies and over

all bending energies of pairs of segments that are connected

along a filament, resulting in:

E

kBT
= ∑

i

l2
p

l4
c,i

(ri − r0,i)
2 + β ∑

i, j

lp

lc,i + lc, j

Θ2
i, j, (1)

where lp is the persistence length of the filaments, lci
, ri and

r0,i are respectively the polymer length, the end-to-end length

and the equilibrium end-to-end length of segment i, and Θi, j



2

is the angle between segment i and j.

We construct our networks via a Monte Carlo relaxation

process. We start with a random, isotropic network that can

be considered as a single filament that crosses itself one thou-

sand times [18]. After a large number of Monte Carlo moves

that alter the topology of the network, we cut segments of

this filament, until we obtain an average filament length L.

We assign a polymer length ls
c to each segment such that the

equilibrium end-to-end length of each segment is equal to the

actual distance between the nodes they connect. After gen-

eration, the network is in equilibrium, but the filaments are

slightly bent - Θi, j 6= 0 - and, as a result, there are internal

stresses in the system. For all networks, during generation we

keep lc = ∑s ls
c/Ns, lp and β fixed, such that lp/lc ≈ 16 and

β = 1.0. lp is a measure for the relative stiffness of bending

versus stretching. In order to isolate the effects of bending and

stretching without altering the network structure and contour

lengths, we vary β . We could, however, vary lp at constant lc
to produce the same effect. Letting lp → β−1l0

p, where l0
p is the

value of lp at β = 1 reproduces Eq. (1) with energy measured

in unit of β 2kBT . Thus with l0
p/lc = 16, β = 10.0 coincides

with lp/lc = 1.6 and β = 0.1 with lp/lc = 160. In addition we

vary L - and thus the average number of nodes per filament

L/lc - by changing the number of segments we cut. Finally

we focus on an experimentally relevant parameter space, with

networks with on average 4, 5, 6, 8, 12 and 20 nodes per fil-

ament or equivalently with coordination number z = 3.0, 3.2,

3.33, 3.5, 3.66 and 3.8. In real-life networks, typical ratios

between lp and lc coincide with values of β ranging from 0.05

(e.g. cortical actin networks [19]) to 10 (e.g. fibrin networks

[5]); here we take values of β ranging from 0.0001 to 10. All

data shown are averages over nine network realizations.

We calculate the dynamical matrix from the harmonic ex-

pansion of the energy about its force-free equilibrium state

and use commercially available routines to find the eigenval-

ues and eigenmodes of the system, neglecting any damping

effects arising in particular from interactions with a surround-

ing fluid. Fig. 1 graphically represents one localized and one

delocalized eigenmode.

To investigate the Maxwell mode counting in our networks,

we remove the internal stresses by subtracting the zero strain

angle, Θi, j,0, between two segments from the actual angle Θi, j

in our Hamiltonian. We then count the number of zero modes

by calculating the dimension of the null space of the dynam-

ical matrix, and we verify the relation N0 = N[5− 3
2
z]. We

verify the stretching relation, Ns = ∑(Nk − 1), by explicitly

counting the number of finite-frequency modes for networks

with β = 0, and thus no bending constraints. We also ver-

ify that Nb = ∑k(Nk − 2) by varying the number of nodes

with non-zero bending modulus β . When internal stresses are

turned back on, the floppy modes are tightened, and there are

only finite-frequency modes for all z (≥ 3.0) and all β > 0.

Also the lengthening of a single segment in the unstressed

samples generates stress in a finite fraction of the segments

and elevates floppy modes to finite frequency a full 10% be-

low the Maxwell threshold. This is comparable to the rigid

FIG. 1: Graphical representations of two eigenmodes of one our

networks, left: (ω = 27, P−1 = 0.51) and right: (ω = 1.4, P−1 =
0.0029), where ω is the eigenfrequency and P−1 is the inverse par-

ticipation ratio (see the discussion of Fig. 3). All filaments in the

networks are shown. The thick and dark beams indicate large defor-

mations.

“stressed” state of network glasses, that exists for z just below

the Maxwell threshold of 2.4 [11].

We calculate the relaxed shear modulus G for networks with

and without internal stresses and for a range of z and β by

deforming the network by a small shear increment and min-

imizing the elastic energy after each shear increment. Fig. 2

summarizes our results. For all values of β , G(z) is a mono-

tonic increasing function of z, reaching its lowest but non-zero

value at z = 3.0, the smallest values in our simulations. As

shown by the dotted curve in the inset of Fig. 2, in the un-

stressed networks, G is zero to within the accuracy of our sim-

ulations for z < zc and develops a nonzero value in the vicinity

of the Maxwell value of z = zc, growing approximately as a

power law for z > zc, though we cannot rule out a first-order

transition. In the stressed state our data is consistent with a

second-order rigidity threshold at z = zp ≈ 2.7 < 3.0, though

again, we cannot rule out a first-order transition. For all β ,

log(G/β ) grows linearly with log(z− zp), where the slope is

around 2.7 for β = 10−4, 10−2 and 10−1 and then decreases

with β to a value around 1.1 at β = 10. The fact that the slope

depends upon β is not surprising, since for large β , we ex-

pect the deformation to be dominated by (affine) stretching of

the segments, the number of which linearly increases with z,

leading to a slope of 1. At small β , response to shear occurs

preferentially through bending rather than stretching modes,

and G is more sensitive to changes in z , as reflected in the

larger value of the slope. For the smallest values of β , G be-

comes approximately linear in β for all values of z, which

again demonstrates that bending dominates the deformation,

as is the case in glasses [21].

There are many examples of structures in which external

stresses can remove floppy modes. Here we show that inter-

nal stresses can have a similar effect, reminiscent of tenseg-

rity structures, in which rigidity can be achieved below the

Maxwell threshold by stressed cables and compressed struts

in carefully designed configurations [22]. In contrast to these

configurations, our networks are random, and rigidity is a



3

 0.0001

 0.001

 0.01

 0.1

 1

 3  3.2  3.4  3.6  3.8

 0.1

 1

 10

 100

 1000

 1

FIG. 2: Double logarithmic plot of G/β in networks with prestress

as a function of z− zp for different values of β . Data points are from

simulation, most error bars are smaller than the size of the symbols.

The slope of the data points ranges from 2.7 upper, overlapping data

points for β = 0.0001 and β = 0.001), 2.6 (β = 0.01), 2.1 (β = 0.1),

1.5 (β = 1.0) and 1.1 (β = 10.0, lower points). A value of G = 1

corresponds to an elastic modulus of ≈ 10 mPa for an actin network

with a concentration f-actin of ≈ 0.05 mg/ml. Inset shows G/Ga f f as

a function of z, for β = 1.0 (upper curve) and β = 0.01 (lower curve).

Dotted curve shows data from unstressed network, for β = 1.0.

consequence of competition between stretching and bending

rather than between stretching and compression. If the net-

work has a structure in which filaments can support self-

stress, a modified Maxwell rule N0 = dN − Nc + S, where

S is the number of states of self-stress [23] or, equivalently,

the number of redundant bonds [24], applies to the stressless

state. Thus, even though global Maxwell counting would indi-

cate the contrary, biopolymer networks with internal stresses

may not have floppy modes and may support shear below the

stressless Maxwell rigidity threshold.

Network geometry, co-ordination number, and spatial di-

mension are all important to the determination of macroscopic

elastic response. Two-dimensional lattices with z = 4, such as

the kagome lattice and the L/lc → ∞ limit of the Mikado lat-

tice formed by the randomly depositing rods on a plane, are

isostatic with respect to stretch, and they both exhibit affine re-

sponse with non-zero shear and bulk moduli that are indepen-

dent of β . The transition from non-affine bending-dominated

to nearly affine stretching-dominated response observed in di-

luted Mikado lattices in Refs. [6, 7, 25] is thus not surprising.

Three-dimensional systems with z = 4 are sub-isostatic with

respect to stretch, and one might expect that bending forces

are required for stabilization against shear. This is indeed the

case for the z = 4 diamond lattice, none of whose bond-angles

are zero (i.e., all filaments are straight), whose shear modulus

vanishes linearly with β [21]. On the other hand, a recently

constructed 3d generalization of the kagome lattice consisting

of infinitely long straight filaments with crosslink coordina-

tion of exactly four provides a counter example to this behav-

ior [26]. Because all its filaments are straight it has a per-

sistent triangular motif, all of its elastic moduli are nonzero

when β = 0. As is the case in most biopolymer networks and

in the diamond lattice, the filaments in our network are not

straight, so we expect behavior closer to that of the diamond

lattice than to that of the straight-filament 3d lattice with non-

affine bending dominated response and a shear modulus that

vanishes with β even in the limit z → 4. Though our simula-

tions do not reach sufficiently close to z = 4 to unambiguously

determine behavior at z = 4, they provide strong evidence that

this expectation is fulfilled. As the inset in Fig. 2 shows, it is

highly improbable that the affine limit, G/Gaff = 1, is reached

for small β . Instead, we find that G ∝ β for the smallest values

of β in Fig. 2, implying that G/Gaff vanishes with vanishing

β .

We now turn to the mode structure of these networks. The

density of states D(ω) and the inverse participation ratio [15],

P−1(ω) =
∑N

i=1 |eiω · eiω |
2

|∑N
i=1 eiω · eiω |

2
, (2)

which provides a measure of the degree of localization of the

eigenmodes, are plotted in Fig. 3. In Eq. (2), eiω is the polar-

ization vector of node i in the mode ω . The value for P−1(ω)
will be 1.0 if the mode displaces one node, 0.5 if the mode dis-

places two nodes, and it will be 1/N for the translational zero

modes that are linear transformations of the whole network.

The data in Fig. 3 are averaged over narrow bins of frequency.

The reduced frequency ω corresponds to physical frequen-

cies ω̃ ≈ 106ω s−1 for actin (lp = 16µm and lc = 1µm) and

ω̃ ≈ 105ω s−1 for fibrin bundles (lp = 33µm and lc = 2µm,

as analyzed in [27]). These frequencies will increase if the

viscosity of the surrounding fluid is included.

Fig. 3a shows the density of states, D(ω) as a function of

logω with logarithmic binning for β = 0.0001,0.01, and 1.0
at z = 3.33. For β = 0.01 and β = 0.0001, there is a peak

in D(ω) at ω ≈ 2 that corresponds to stretching modes. Its

total area for β = 0.0001 is equal to the number of stretch-

ing constraints, 2N − NF or equivalently to the number of

non-vanishing modes at β = 0. With increasing z, the area

under the right peak increases, as we would expect from

the increase in the number of stretching constraints (data not

shown). There is a second peak at smaller ω that moves to the

left as β decreases. We verified that the total area under this

peak is N′
b = N0 +Nb, where N0 is the number of zero modes of

the unstressed network, and Nb is the number of bending con-

straints. Where possible, shear deformation will take place

via these soft bending modes. As we have seen, G ∼ β for

small β , which implies that this is indeed the case. Again, we

average over narrow bins of frequency with fixed logarithmic

width to obtain P−1(log ω), which is plotted in Fig. 3b for

β = 0.0001. Interestingly, both bending and stretching modes

can be localized and delocalized.

Figs. 3c and 3d plot D(ω) and P−1(ω) for different val-

ues of z and β = 1.0. The broad distribution in P−1 reflects

the randomness in our system. Clearly the number of soft,

low-frequency modes increases with decreasing z, and these
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FIG. 3: a) The logarithm of the density of states, for β = 1.0 (solid

curve), β = 0.01 (black dotted) and β = 0.0001 (grey dotted) for net-

works with z = 3.33. Note that the right peak of the latter two curves

overlaps, and the left peak is shifted. b) The inverse participation ra-

tio for β = 0.0001, again for z = 3.33. c) The density of states and d)

the inverse participation ratio as a function of z. All data shown are

for networks with β = 1.0 and (starting from the solid line) z = 3.0,

z = 3.2, z = 3.33, z = 3.5,z = 3.66 and z = 3.8. Data shown are

averaged over narrow bins of (the logarithm of) frequency.

modes are less extended. At low z, the filaments are less con-

strained in the networks, leading to an increase in soft defor-

mation modes in the networks; in this limit, movement of a

single segment will lead to a less extended deformation field.

This is reflected in the increase of P−1 when decreasing z.

We verified that the Debye scaling is approached and the fre-

quency at which this scaling starts decreases for decreasing

z. For z = 3.0 and z = 3.2 we do not find a peak in D(ω) at

ω = 0, which is consistent with the given analysis that internal

stresses can remove floppy modes for z < zc.

Our results show that networks with internal stress violate

stressless Maxwell counting and exhibit rigidity and no floppy

modes below the Maxwell isostatic threshold. This can be rel-

evant for in vivo biopolymer networks, that might have large

internal stresses which increase the stiffnesses of the cells [3].

As β → 0, there is a clean separation between low-frequency

bending modes and high-frequency stretching modes. As is

the case in most real life biopolymer networks but contrary

to that of most biopolymer networks studied analytically and

in simulations, our networks consist of bent filaments. Our

simulations show that it is highly improbable for this class of

networks that the affine limit is reached for z approaching 4

at small β . Instead, the networks deform via low-frequency

bending modes. Further investigation of this model, includ-

ing a more thorough comparison with network glasses and a

pebble-game analysis [24] to locate the critical point and to

determine its order, would clearly be interesting.
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