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Viscous compressible flow around a sphere is considered in the limit of zero Reynolds and Mach
numbers. An exact expression for the force on the sphere undergoing arbitrary motion with com-
pressibility effects is presented. Quasi-steady, inviscid unsteady, and viscous unsteady force com-
ponents are identified. Numerical results are in excellent agreement with the theory. The present
formulation offers an explicit expression for the unsteady force in the time domain and can be
considered as a generalization of the Basset-Boussinesq-Oseen equation to compressible flow.
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INTRODUCTION

The unsteady force on a particle in accelerated motion was first analyzed by Stokes [1]. Later Basset [2], Boussinesq
[3], and Oseen [4] independently examined the time-dependent force on a sphere in a quiescent viscous incompressible
fluid. The resulting equation of motion the so-called BBO equation, can be written as

mp
dv
dt

= −6πaµv − 1
2
mf

dv
dt
− 6a2ρ

√
πν

∫ t

−∞

1√
t− ξ

dv
dt

∣∣∣∣
t=ξ

dξ , (1)

where mp, v(t), and a are the particle mass, velocity, and radius. ρ, mf , µ, and ν are the density, displaced-mass,
dynamic viscosity, and kinematic viscosity of the fluid. The three terms on the right-hand side are the quasi-steady
(Stokes) drag, inviscid unsteady (added-mass), and viscous unsteady (Basset history) forces, respectively. The BBO
equation has been extended to non-uniform creeping flows by Maxey and Riley [5] and Gatignol [6].

Our primary goal is to extend the BBO equation to compressible flows. The first work relevant to our goal appears
to be that of Zwanzig and Bixon [7] (also see Metiu et al. [8]), who investigated the velocity-correlation function of
an atom immersed in a compressible visco-elastic liquid. Temkin and Leung [9] and Guz [10] have presented solutions
that are essentially identical except for differences due to simplifying assumptions and some typographical mistakes.

The purpose of this work is to present an explicit expression for the time-dependent force on a spherical particle
undergoing arbitrary unsteady motion on the acoustic time scale such that compressibility effects are important.
Attention is restricted to the zero Reynolds- and Mach-number limits so that non-linear effects can be ignored. We
use previously derived solutions of the linearized compressible Navier-Stokes equations in the Fourier/Laplace domains
to determine the force on a particle in response to a delta-function acceleration in the time domain. This force response
is then used to construct an expression for the time-dependent force on a particle undergoing arbitrary motion. The
resulting expression can be interpreted as the generalization of the BBO equation to compressible flows. We show
that compressibility causes the inviscid unsteady force to assume an integral representation first derived by Longhorn
[11]. We obtain the effect of compressibility on the viscous unsteady force. The theoretical results are compared
with direct numerical simulations of the compressible flow around an accelerating particle. Finally, we present the
generalized BBO equation that can be used to track particles in compressible flow.

PROBLEM FORMULATION

We consider the unsteady motion of a particle in a quiescent compressible Newtonian fluid. We consider the limit
of Re→ 0 and M→ 0 such that the perturbation field generated by the particle motion is governed by the linearized
compressible Navier-Stokes equations. Here, M and Re are suitably defined Mach and Reynolds numbers. The
continuity and momentum equations reduce to the form given by Zwanzig and Bixon [7],

∂ρ′

∂t
+ ρ0∇ · u′ = 0 , (2)

ρ0
∂u′

∂t
+∇p′ − µ∇2u′ − (µb +

1
3
µ)∇∇ · u′ = 0 . (3)

In Eqs. (2) and (3), properties associated with the quiescent fluid are denoted by the subscript 0, perturbation
quantities are denoted by the superscript ′, u is the velocity, p is the pressure, and µb is the bulk viscosity. Because
temperature fluctuations are neglected, the viscosities are constant and the speed of sound

c0 =
√

(∂p/∂ρ)s =
√
p′/ρ′ (4)

can be used as a closure relation. These linearized equations have been solved analytically by Zwanzig and Bixon [7].
who obtained an explicit expression for the force on the particle in the frequency domain. Given a general particle
motion with velocity v(t), the solution of Eqs. (2)–(4) in Laplace space can be written as

F(s) = −mfsG(r1, r2)L(v) (5)

where F(s) = L(F (t)) and L(v) are the Laplace transforms of the time dependent force F (t) and rectilinear particle
velocity v(t), respectively, and mf = 4πρ0a

3/3 is the mass of fluid displaced by the particle. The transfer function
G(r1, r2) is given by

G(r1, r2) =
(9 + 9r1 + 2r21)(1 + r2) + (1 + r1)r22

r21(1 + r2) + (2 + 2r1 + r21)r22
, (6)
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where

r1(s) =
as/c0√

1 + (µb/µ+ 4/3) νs/c20
and r2(s) = a

√
s

ν
. (7)

SOLUTION FOR IMPULSIVE MOTION

Since the problem is linear, the force on a particle undergoing arbitrary rectilinear motion v(t) can be expressed as
a convolution integral

F (t) =
∫ t

−∞

dv

dξ
Fδ(t− ξ) dξ , (8)

where Fδ(t) is the force response to a delta-function acceleration (i.e., corresponding to a unit step change in particle
velocity). Using Eq. (5), Fδ(t) can be expressed as

Fδ(s) = −mfG(r1, r2) . (9)

An explicit Laplace inverse transform of Eq. (9) and, therefore, a closed-form expression for Fδ(t) is not readily
available. Before constructing the time-domain solution, we first analyze the limiting case of incompressible flow.

The incompressible limit is obtained by letting c0 →∞ in Eq. (9) to obtain

Fδ,inc(s) = −mf
9 + 9r2 + r22

2r22
, (10)

where r22 can be interpreted as the Laplace variable corresponding to time non-dimensionalized by the viscous time
scale a2/ν. The corresponding expression in the time domain is

Fδ,inc(t) = −6πaµH(t)− 1
2
mfδ(t)− 6a2ρ0

√
πν

t
H(t) , (11)

where H(t) is the Heaviside step function. The above expression is identical to the BBO equation for a delta-function
acceleration, cf. Eq. (1).

COMPRESSIBILITY EFFECT ON INVISCID UNSTEADY FORCE

We isolate the three terms (quasi-steady, inviscid unsteady, and viscous unsteady forces) on the right-hand side
of Eq. (1) and investigate the effect of compressibility. First, we consider the compressibility effect on the inviscid
unsteady force. The inviscid limit is obtained by substituting ν = 0 in Eq. (9) to get

Fδ,iu = −mf
1 + r1

2 + 2r1 + r21
, (12)

where r1 can be interpreted as the Laplace variable corresponding to time non-dimensionalized by the acoustic time
scale a/c0. The corresponding expression in the time domain is

Fδ,iu(τ) = −mf
c0
a
e−τ cos τ H(τ) , (13)

where τ = c0t/a. The effect of compressibility on the inviscid unsteady force can be established by comparing Eq.
(13) with the second term on the right-hand side of Eq. (11). The finite speed of sound destroys the instantaneous
relationship between acceleration and force. Furthermore, compressibility regularizes the singular delta-function kernel
to a smooth oscillatory exponential decay. From a physical perspective, this can be explained by the compression and
rarefaction waves that emanate from the accelerated particle which propagate outward at finite speed. However, due
to the exponential-decay term in Eq. (13), the compressibility effect is significant only for τ . 10.

The above inviscid unsteady force was first obtained by Longhorn [11] using the acoustic approximation of the
velocity potential equation and is thus valid only in the zero Mach-number limit. The right-hand side of Eq. (13) can
be considered to be the response kernel for a delta-function acceleration for M→ 0. Note that

∫∞
0
e−τ cos τ dτ = 1/2,

and thus over times much longer than the acoustic time scale, the net impulse on the particle reduces to the correct
limit as that given by the incompressible added-mass force. The corresponding kernels for finite Mach numbers can
be obtained through numerical simulations, see Parmar et al. [12].
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ASYMPTOTIC BEHAVIORS OF COMPRESSIBLE VISCOUS UNSTEADY FORCE

We now examine the effect of compressibility on the viscous unsteady force. To study the force at arbitrary times,
we resort to numerical inversion of Eq. (9). With V denoting the scale of the velocity variation, we define the Reynolds
and Mach numbers as Re = ρ0V a/µ and M = V/c0. Thus we can write

Fδ(τ)
mfc0/a

= −L−1 (G(R1, R2)) , (14)

where L−1 denotes the Laplace inverse with respect to the non-dimensional time τ = c0t/a and

R1 =
S√

1 + (µb/µ+ 4/3) Kn′S
and R2 =

√
S

Kn′
, (15)

where S = as/c0 is the non-dimensional Laplace variable and Kn′ = M/Re = µ/ρ0c0a denotes a modified Knudsen
number. The continuum assumption is commonly taken to imply Kn < 0.01, where Kn =

√
γπ/2 M/Re, and thus we

are interested in the force response for Kn′ . O(10−2).
Although an explicit expression for Fδ(τ) valid for arbitrary τ is not available, four different asymptotic regimes

can be identified: (i) Regime I: Very short time, defined as τ � Kn′ � 1, (ii) Regime II: Intermediate short time,
defined as Kn′ � τ � 1, (iii) Regime III: Intermediate long time, defined as 1� τ � 1/(Re M), (iv) Regime IV: Very
long time, defined as 1� 1/(Re M)� τ .

In what follows, we examine the behavior of Fδ(τ) in the first three asymptotic regimes. The very short time
behavior of Fδ(τ) can be obtained by considering the following limit in the Laplace space: 1 � Kn′|S| � |S|.
Correspondingly, the transfer function can be simplified and the Laplace inverse gives the time domain force response
in Regime I as

Fδ(τ) ∼ −
(

4
9

+
2
9

√
µb
µ

+
4
3

)
6a2ρ0c0

√
πKn′

τ
H(τ) . (16)

Comparing with the third term on the right-hand side of Eq. (11), which can be written as −6a2ρ0c0
√
πKn′/τ , it can

been seen that compressibility modifies the viscous unsteady force at very short times by a factor that depends on
µb/µ. For µb = 0, compressibility reduces the unsteady force by 4(1 + 1/

√
3)/9 ≈ 0.70. The correction factor to the

viscous unsteady force increases with increasing bulk viscosity. Interestingly, for µb/µ = 59/12 ≈ 4.92 the correction
factor is equal to unity and Eq. (16) becomes identical to that in the incompressible case.

From the definition of the intermediate short time (Kn′ � τ � 1), the following condition can be placed on the
Laplace variable: Kn′|S| � 1� |S|. Then G(R1, R2) can be simplified and the dominant contribution for intermediate
short time yields in Regime II

Fδ(τ) ∼ −mf
c0
a
e−τ cos τ − 8

3
a2ρ0c0

√
πKn′

τ
H(τ) . (17)

The first term is same as Fδ,iu(τ) given by Eq. (13). Comparing the second term with the third term on the right-hand
side of Eq. (11), it can been seen that the viscous unsteady force at intermediate short times is reduced by a factor
of 4/9 ≈ 0.44 because of compressibility effects. Note that this reduction is independent of µb/µ. As will be seen
below in Fig. 1, where the results of the numerical Laplace inversion are shown, Regime II can be observed only if
Kn′ � 1. With increasing Kn′, the duration of the Regime II reduces and vanishes entirely for Kn′ ≈ 10−2. Thus the
overall effect of compressibility on the short-time behavior of the viscous unsteady force is not as pronounced as for
the inviscid unsteady force. The τ−1/2 decay observed in the incompressible case persists and only the magnitude of
the viscous unsteady force is modified.

The intermediate long-time behavior can be obtained in a similar manner by considering an asymptotic expansion
for |S| → 0 and carrying out the Laplace inverse we obtain in Regime III

Fδ(τ) ∼ −6πaµH(τ)− 6a2ρ0c0

√
πKn′

τ
. (18)

Comparing with Eq. (11), both the quasi-steady and the viscous unsteady forces are recovered and found to be
unaffected by compressibility effects. Strictly speaking, the above solution for the linearized perturbation Navier-
Stokes equations is valid for τ � 1 and the additional limit of τ � 1/(Re M) arises only from the neglect of the
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nonlinear terms. The time scale on which nonlinear effects become significant can be estimated as follows. In deriving
the linearized form of the compressible Navier-Stokes equations, the assumption that the inertial terms are negligible
compared to the viscous terms implies that the length scale L� ν/V . If we take the length scale to grow by diffusion as√
νt, the assumption of linearized compressible Navier-Stokes equations can be justified only for t� ν/V 2. Expressed

in terms of the acoustic time scale, this restriction becomes τ � 1/(Re M). Note that the above argument applies in
an incompressible flow also, and the nonlinear effects can be shown to become important for τc � 1/Re, where τc is
time non-dimensionalized by the convective time scale a/V . This is consistent with past results for incompressible flow
that the Basset-history kernel is valid only for τc � 1/Re even at low Reynolds numbers (see Mei and Adrian [13]).
Thus, owing to nonlinearity, the very long time force behavior in Regime IV will be both Reynolds- and Mach-number
dependent in a complex manner and will not be addressed here.

NUMERICAL EVALUATION OF VISCOUS UNSTEADY FORCE

In the following, we extract the compressible form of the viscous unsteady force at arbitrary times using numerical
Laplace inversion and compare it with its incompressible form. We isolate the viscous unsteady force from the overall
force expression given in Eq. (14) by subtracting the quasi-steady contribution and the inviscid unsteady force given
in Eq. (13).

Fδ,vu(τ)
mfc0/a

= −
(
L−1 (G(R1, R2))− 9

2
Kn′ − e−τ cos τ

)
. (19)

We recast this viscous unsteady response to delta function acceleration in the following form

Fδ,vu(τ)
mfc0/a

= −9
2

√
Kn′

πτ
C(τ) , (20)

where C(τ) is a compressible correction function, defined as the ratio of Fδ,vu(τ) relative to the incompressible form
of the viscous unsteady force.

Figure 1 shows C(τ) plotted against τ . In Regime I (τ � Kn′ � 1) the correction function approaches 0.70 at
very short times. Also, we observe that C(τ) → 1 as τ → ∞ as expected. At intermediate short times (which exist
only for Kn′ � 10−2) the correction function takes a constant value of 0.44. A more complex compressibility effect
can be observed at transitional times between the different asymptotic regimes. The decrease from the constant value
at very short time to the new constant value at intermediate short time occurs in a monotonic fashion. At about
τ = O(10−2Kn′), C(τ) starts to deviate from its limiting value of 0.70 and decreases to 0.44 at about τ = O(Kn′). The
transition from Regime II to Regime III that occurs at τ ≈ O(1) is more complex. At τ = O(10−2), C(τ) increases
rapidly irrespective of Kn′ toward a peak value of about 1.45 before decreasing in a strongly damped oscillatory
manner toward unity. Thus, the compressibility correction to the viscous unsteady force is bounded between 0.44 and
1.45 for µb = 0. The sensitivity of C(τ) to the bulk viscosity is also shown in Fig. 1.

INVISCID AND VISCOUS UNSTEADY FORCE KERNELS AND NUMERICAL CONFIRMATION

Based on results presented in the previous sections, we write

Fδ
mfc0/a

=
1

mfc0/a

(
Fδ,qs + Fδ,iu + Fδ,vu

)
= −9

2
ν

ac0
− e−τ cos τ − 9

2

√
Kn′

π

C(τ)√
τ
, (21)

where Fδ,qs is the quasi-steady force in response to a delta-function acceleration. While the normalized inviscid
unsteady force depends only on τ , the normalized viscous unsteady force also depends on both Kn′ and µb/µ through
C(τ). The above force response to a delta function acceleration can be used to define inviscid and viscous unsteady
force kernels as

Kiu(τ) = e−τ cos τ , Kvu(t) =
C(c0t/a)√

t
= C(c0t/a)KB(t) , (22)

where KB(t) is the Basset history kernel.
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FIG. 1. The behavior of C(τ) that accounts for the compressibility effect on the viscous unsteady force.

We have carried out numerical simulations for µb = 0, wherein the spherical particle is initially stationary in a
quiescent fluid and impulsively accelerated to a final steady state. To extract the unsteady force, we subtract the
quasi-steady standard drag. The results of the simulations are shown in Fig. 2, where the non-dimensional unsteady
force is plotted as a function of the acoustic time τ = c0t/a. The agreement between the theory and the simulations
is excellent. The simulations capture accurately the τ−1/2 decay for both τ � 1 and τ & O(10). At intermediate
times, the influence of inviscid unsteady force becomes significant and the simulations capture this well.

In the first three simulations, we have 1/(Re M) = {104, 103, 102}, respectively, and thus the agreement between the
nonlinear simulations and the linear theory is good over the entire range of the computed time interval, as expected.
We have also simulated a case of M = 10−1 and Re = 10, corresponding to Kn′ = 10−2. Again the agreement is
excellent at small times. However, since 1/(Re M) = 1 for this case, the effect of nonlinearity becomes important for
τ ≈ O(1) and the results of the simulation show a faster decay than the τ−1/2 behavior predicted by the linear theory.

As τ → 0, while the inviscid kernel is equal to unity, the viscous kernel diverges as 1/
√
τ . At large times, the

inviscid kernel decays exponentially, while the viscous kernel decays algebraically. Thus, both at short and long times,
the viscous unsteady force dominates the inviscid unsteady force. At intermediate times, the inviscid unsteady force
becomes important and it can be shown that only for Kn′ > 5.96× 10−2 will the viscous unsteady force dominate the
inviscid unsteady force at all times. This limiting value of Kn′ must be viewed with caution, however, because the
continuum assumption breaks down for Kn′ > 10−2. At smaller values of Kn′, there exists an intermediate range of
time where the inviscid unsteady force will exceed the viscous unsteady force.

GENERALIZATION OF THE BBO EQUATION TO COMPRESSIBLE FLOWS

The above-presented results can be used to write a general expression for the force on a particle undergoing arbitrary
time-dependent motion v(t) in a viscous compressible fluid. The generalization of the BBO equation to compressible
flow can be expressed as

mp
dv
dt

= −6πaµv −mf

∫ t

−∞
Kiu

(
(t− ξ)c0

a

) dv
dt

∣∣∣∣
t=ξ

d
(
ξ
c0
a

)
− 6a2ρ0

√
πν

∫ t

−∞
Kvu(t− ξ) dv

dξ

∣∣∣∣
t=ξ

dξ , (23)
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FIG. 2. Time evolution of the normalized unsteady force. Theoretical predictions (last two terms of Eq. (21)) are plotted as
solid lines for µb = 0. Corresponding simulation results for four different cases are shown as symbols.

where the inviscid and viscous unsteady force kernels are given in Eq. (22). The above equation is valid in the limit of
zero Reynolds and Mach numbers. The significance of this extension is two-fold. First, it includes explicit expressions
for the inviscid unsteady and viscous unsteady components of the force that reduce to their well-known counterparts
in the incompressible limit. Second, the extension can be combined with other forces such as buoyancy and lift to
give a complete equation of motion.

Both the inviscid and viscous compressibility corrections decay rapidly and can be ignored for τ & 10. Note that
it was mentioned earlier that the long-time integral of the inviscid unsteady kernel Kiu(τ) reduces to the added-mass
coefficient of 1/2. A similar result can be established for the viscous unsteady kernel Kvu(τ) given by Eq. (22). The
long-time integration of Kvu(τ) can be shown to approach the incompressible limit,∫ t

0

Kvu(ξ) dξ −
∫ t

0

KB(ξ) dξ → 0 for t� 1 . (24)

When the proposed equation of motion (23) is used in practice, an expression for C(τ) is required. The following
curve-fit can be employed for this purpose, assuming that µb = 0:

C(τ) =
4
9

+
4

9
√

3
1

1 + 2.38
(
τ

Kn′

)0.57
e1.02τ/Kn′

+ 2τC1e−C2τ {cos [C3(τ − C4)] + sin [C3(τ − C4)]}+
5
9

τC5

τC5 + C6
, (25)

where

C1 = 0.96 + 1.71 exp
[
0.51(log Kn′ + 1.25)

]
, C2 = 1.14 + 0.22 exp

[
0.57(log Kn′ + 1.45)

]
, (26)

C3 = 0.87− 0.26 exp
[
0.50(log Kn′ + 3.55)

]
, C4 = 0.25− 1.38 exp

[
0.60(log Kn′ + 1.98)

]
, (27)

C5 = 3.38 + 7.82 exp
[
0.72(log Kn′ − 0.16)

]
, C6 = 5.09 + 5.71 exp

[
0.89(log Kn′ + 2.42)

]
. (28)

The maximum error of the curve-fit is less than 1 percent (see Fig. 1).
Finally, it should also be pointed out the kernels presented in Eq. (22) combined with the above correction function

are appropriate in the limit of zero Reynolds and Mach numbers. The finite Mach-number influence on the inviscid
kernel has been addressed by Parmar et al. [12]. Similarly, the correction function C(τ) can be expected to depend
on both Reynolds and Mach numbers.
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CONCLUSIONS

We have obtained an explicit equation for the time-dependent force on a spherical particle undergoing arbitrary un-
steady motion in a compressible flow. The resulting equation of motion is the generalization of the Basset-Boussinesq-
Oseen equation to the compressible regime. The significance of this extension is that it includes explicit expressions for
the quasi-steady, inviscid unsteady, and viscous unsteady components of the force, which reduce to their well-known
counterparts in the incompressible limit. The effect of compressibility on the inviscid unsteady force is significant,
while the effect on the viscous unsteady force is modest. The modification due to compressibility appears as a mul-
tiplicative correction factor C(c0t/a) to the Basset history force, whose value is bounded, 4/9 ≤ C(c0t/a) < 1.5 (for
zero bulk viscosity). The effect of compressibility on the inviscid unsteady and the viscous unsteady is significant only
up to few acoustic times, say c0t/a < 10.
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