
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Effect of Collisionality on Kinetic Stability of the Resistive
Wall Mode

J. W. Berkery, S. A. Sabbagh, R. Betti, R. E. Bell, S. P. Gerhardt, B. P. LeBlanc, and H. Yuh
Phys. Rev. Lett. 106, 075004 — Published 18 February 2011

DOI: 10.1103/PhysRevLett.106.075004

http://dx.doi.org/10.1103/PhysRevLett.106.075004


LA12636

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

The Effect of Collisionality on Kinetic Stability of the Resistive

Wall Mode

J.W. Berkery,1 S.A. Sabbagh,1 R. Betti,2 R.E.

Bell,2 S.P. Gerhardt,2 B.P. LeBlanc,2 and H. Yuh3

1Department of Applied Physics and Applied Mathematics,

Columbia University, New York, New York 10027, USA

2Princeton Plasma Physics Laboratory,

Princeton University, Princeton, New Jersey 08543, USA

3Nova Photonics, Inc., Princeton, New Jersey 08543, USA

(Dated: January 25, 2011)

Abstract

The impact of collisionless, energy independent, and energy dependent collisionality models

on the kinetic stability of the resistive wall mode is examined for high pressure plasmas in the

National Spherical Torus Experiment. Future devices will have decreased collisionality, which

previous stability models predict to be universally destabilizing. In contrast, in kinetic theory

reduced ion-ion collisions are shown to lead to a significant stability increase when the plasma

rotation frequency is in a stabilizing resonance with the ion precession drift frequency. When the

plasma is in a reduced stability state with rotation in-between resonances, collisionality will have

little effect on stability.
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Introduction.– The resistive wall mode (RWM), a kink mode instability of a tokamak

plasma, must be stabilized for future disruption-free magnetically confined fusion operation.

Theoretical models have shown that the RWM can be passively stabilized by a combina-

tion of plasma toroidal rotation and an energy dissipation mechanism [1], with rotational

stabilization garnering the most attention [2, 3]. Determining the dependence of stability

on collisionality is important, particularly for confident extrapolation of results to future

machines such as ITER or a spherical tokamak component test facility (ST-CTF) [4], which

will operate at lower collisionality and at different plasma rotation levels.

Classic models of RWM stability [5, 6] did not explicitly include collisionality, but rather

a more general dissipation term, which was seen to be stabilizing. The inclusion of neoclas-

sical dissipation [7] in such a model introduced a dependence of the critical plasma rotation

for stability on collisionality. It was posited that larger ion-ion collisionality, νii, would allow

a smaller toroidal plasma rotation, ωφ, while maintaining stability [3]. This dependence was

explored in the National Spherical Torus Experiment (NSTX) [8] and found to be qualita-

tively consistent with experimental results [3]. In the past few years, theoretical models of

the RWM including kinetic effects have been introduced [9–12]. Application of this stability

model to NSTX equilibria has indicated the importance of a stabilizing resonance between

the plasma rotation and the precession drift frequency, and that the marginal stability

point should shift from higher to lower rotation as collisionality is increased, consistent with

previous conclusions [13–15]. However, a more detailed examination of the interplay of colli-

sionality with kinetic resonances presented here illustrates a key change to the long-standing

thought that higher collisionality is generally stabilizing.

Inclusion of Collisionality in δWK.– The RWM energy principle with kinetic effects is

[9, 10]:

(γ − iωr) τw = − (δW∞ + δWK) / (δWb + δWK) , (1)

where γ and ωr are the growth rate and frequency of the mode, τw is the wall time (the

eddy current decay time of the surrounding conducting structure), δW∞ is the fluid no-wall

potential energy, δWb is the fluid with-wall potential energy, and δWK is the kinetic contri-

bution. The kinetic part is derived from the volume integral of a small displacement away

from equilibrium, ξ⊥, times ∇ · P̃K , the perturbed kinetic pressure tensor. The perturbed

kinetic pressures are found by taking moments of the perturbed distribution function, f̃ ,
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which comes from the solution to the linearized drift kinetic equation,

df̃/dt +
(

F̃/m
)

∇vf = C(f̃), (2)

where F̃ is the perturbed force. The simplest form of the collision operator is the Krook

operator, C(f̃) = −νeff f̃ , where νeff is the effective collision frequency, which will be defined

explicitly in the next section. Using the solution for f̃ from Eq. 2 eventually results in the

following form for δWK (Refs. 9, 10, and 15):

δWK ∼
∫ ∫

|χ|
∫

λε̂
5

2 e−ε̂dε̂dχdΨ, (3)

where λ is the frequency resonance fraction, which for trapped thermal ions is:

λ =
[Ω1Ω2 + γνeff + γ2] + i [γ(Ω1 − Ω2) + νeffΩ1]

Ω2
2 + (νeff + γ)2

. (4)

Collisionality enters the kinetic stabilization as a component of a frequency resonance term

within an integration over normalized energy (ε̂ = ε/T ), pitch angle (χ), and magnetic flux

(Ψ). In splitting λ into real and imaginary parts we have defined Ω1 = ω∗N +
(

ε̂ − 3
2

)

ω∗T +

ωE −ωr and Ω2 = 〈ωD〉+ lωb +ωE −ωr. Note that there are contributions to Im(δWK) from

the mode-particle resonance in the integral of Eq. 3 when Ω2 → 0, and from non-resonant

dissipation effects when γ, νeff 6= 0.

The collisionality term’s relative magnitude with respect to the other frequencies – the

density and temperature gradient parts of the diamagnetic frequency (ω∗N and ω∗T ), the

E × B frequency (ωE = ωφ − ω∗N − ω∗T ), the bounce-averaged precession drift frequency

(〈ωD〉), and the harmonic times the bounce frequency (lωb) – determine its importance in

stabilization. Therefore, it is not possible a priori to say whether decreased collisionality

will decrease stability for a given rotation level, as was theorized in simpler models [3, 7].

Instead, theoretical calculations of kinetic stability of the resistive wall mode have shown

that changing collisionality through temperature and density can either increase or decrease

the stability, depending on the plasma rotation [13, 14].

Let us now construct a simple analytic model (and make the assumption that γ is much

smaller than the other relevant frequencies) and separate it into two cases, Ω2
>∼ νeff and

Ω2 ≪ νeff . In the former case, Im(δWK) is dominated by a collisional dissipation term,
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FIG. 1. (Color online) Calculated Re(δWK) and Im(δWK) for each νeff model, for NSTX shot

140132 @ 0.704 s off-resonance a) and b), and on-resonance c) and d).

while the latter case Im(δWK) is dominated by a rotational resonance term. Therefore we

will separate plasmas with particular rotation profiles into “off-resonance” (Ω2
>∼ νeff) and

“on-resonance” (Ω2 ≪ νeff) cases. This is a simplification, as any plasma rotation profile

could cause resonance to occur with particles of particular pitch angle, energy, and radial

location, but it is a useful exercise to examine the parametric dependence of δWK on νeff .

We find:

δW off
K ∼ Ω1Ω2

Ω2
2 + ν2

eff

+ i
νeffΩ1

Ω2
2 + ν2

eff

, (5)

δW on
K ∼ Ω1Ω2

ν2
eff

+ i

(

Resonant term +
Ω1

νeff

)

. (6)

Therefore, for off-resonance plasmas, collisionality more strongly affects the imaginary

term, and decreased collisionality tends to decrease Im(δWK) while increasing Re(δWK)

slightly. For on-resonance cases, collisionality more strongly affects the real term, and de-

creased collisionality increases Re(δWK). The “Resonant term” above results from the

residue of the integration of ∼ 1/Ω2 as Ω2 → 0.

Collisionality Models.– There are several possibilities that can be considered for νeff in
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Eq. 2 for momentum-transferring collisions between test particles j and bulk ions i. Three

simple expressions are: collisionless, ν0 = 0, no energy dependence (SI units) [16]:

ν1(Ψ) =

√
2nim

1

2

jiZ
2
i Z

2
j e

4 ln Λ

12π
3

2 ǫ2
0mjT

3

2

j

ǫ−1
r , (7)

and simple energy dependence: ν2(Ψ, ε) = ν1ε̂
−

3

2 , where mji = mjmi/(mj + mi), Z is

the charge state, and Λ is the “plasma parameter”. Density (n) and temperature (T ) are

assumed to be one-dimensional spatial functions of Ψ. Including ǫr, the inverse aspect ratio,

makes νeff the frequency of collisions causing a trapped ion to take a scattering step on the

order of the banana width [17].

The MISK code [10, 14] uses the simple energy dependence, ν2. By including an energy

dependence, the effect of reduced collisionality for particles in the high energy tail of the

distribution function is included [10]. In contrast, other codes, such as MARS-K [11], consider

both ions and electrons to be collisionless (νeff = ν0). A potentially more accurate way of

including collisionality is through a Lorentz operator with complex energy dependence, and

a pitch-angle dependence [18].

Note that a typical value of ν1 is about 1 kHz for NSTX over most of the profile from the

axis towards the edge. The collisionality is much larger for electrons (νei/νii ≈
√

2mi/me ≫
1), therefore it will have a bigger impact on the electron calculation [19]. Conversely, colli-

sions of energetic particles with the bulk ions are extremely rare (νai/νii = (Ti/εa)
3/2 ≪ 1),

so energetic particle collisionality is expected to be irrelevant [15].

The Effect of Collisionality Model on Experimental Stability Calculations.– The MISK

code is used to calculate the various components of δWK , including trapped ions, trapped

electrons, circulating ions, Alfvén layers, and energetic particles (beam ions) for the NSTX

discharge 140132 @ 0.704 s. This equilibrium is from just before the RWM goes unstable

in the experiment and has experimental rotation and collisionality profiles, defined as ωexp

φ

and νexp, which are in the typical operational range. MISK uses a perturbative approach for

this calculation; the RWM eigenfunction was taken directly from the PEST code [20] and

assumed to be unchanged by the kinetic effects. The calculation was performed with each

of the three collisionality models and for off and on-resonance cases. For the off-resonance

case 1.5ωexp

φ , which falls in between ωD and ωb resonances, was used. For the on-resonance

case, a value of 0.2ωexp

φ , which is in resonance with ωD, was used.
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We can now consider the individual components of δWK for both off and on-resonance

cases (Fig. 1). The energetic particle component, as expected, is not affected by the model

used. Alfvén layer contributions [10, 14] are not discussed here; they are also minimally

affected.

The largest difference between the collisionless and the two collisional models is that

when collisions are added the trapped electron component becomes nearly zero. Rather

than acting to dissipate the energy of the mode, electron-ion collisions are so frequent that

they dissipate the normally stabilizing kinetic electron pressure perturbations, thus reducing

the importance of electrons to RWM stabilization. This is expected for NSTX, because the

electron νeff in the denominator is large compared to other frequencies, however in future

devices with lower overall collisionality this may not be the case. Indeed, in a previous MISK

calculation for ITER [15] the ion and electron contributions to δWK were roughly of the

same order. One difference of using ν2 instead of ν1 is that for high energy suprathermal

electrons, νeff is reduced, making the electron Re(δWK) increase slightly.

The on-resonance case selected here refers to a resonance between the trapped ion preces-

sion drift frequency and the Doppler-shifted mode frequency for the zero bounce harmonic,

l = 0. Since there is no equivalent to l = 0 for circulating ions, the transit frequency is al-

ways present in Ω2, so δWK is often small for circulating ions, and it is relatively unaffected

by collisionality.

Therefore besides collisionless electrons, the only component significantly affected by

collisionality is the trapped thermal ion. This component should follow the parametric

dependence of Eqs. 5 and 6, and indeed we find that, as expected, in the off-resonance case

both Re(δWK) and Im(δWK) are affected, while in the on-resonance case Re(δWK) is more

strongly affected. In both cases the values calculated with ν1 are farther from the collisionless

case than ν2 is, because the energy dependence reduces ν2 for suprathermal particles.

The Effect of Collisionality Magnitude on Experimental Stability Calculations.– It is in-

teresting to see what effect the magnitude of the collision frequency has on stability as well,

especially in the light of future machines which will have lower collisionality. Figure 2 shows

a stability diagram [14] for the off and on resonance cases, plotting the values Re(δWK)

vs. Im(δWK) for each of the collisionality models. The shaded region is predicted to be

unstable (γ > 0) and the lines are contours of constant normalized growth rate, γτw, cal-

culated from Eq. 1 using MISK, with δWb and δW∞ from PEST. Using ν2 as the best model,
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FIG. 2. (Color online) Stability diagram for NSTX shot 140132 @ 0.704 s off (a) and on (b)

resonance, showing δWK from MISK for the three different collisionality models and a range of

scaled ν2. In (b) the ν0 point is off scale to the right.

it is scaled from one-tenth to ten times νexp. Here we assume that νeff changes but ni and

Ti remain constant in the rest of the calculation. Although this is an artificial situation, it

allows us to examine the role of collisionality independent of other variables, in contrast to

the analysis that was previously performed [13, 14]. Changes of even a factor of two can

have a significant effect. Note that the ν0 point is a continuation of the trends to zero (for

example, the negative Im(δWK) point for ν0 in Fig. 2a and Fig. 1b).

As expected from Eq. 5, in the off-resonance case, decreased νeff increases Im(δWK)

while also increasing Re(δWK) (Fig. 2a). The net effect is that the calculation tends to

move along contours of constant γ, and therefore the stability stays relatively constant. For

the on-resonance case (Fig. 2b), decreased νeff increases Re(δWK) while Im(δWK) is less

affected, as expected from Eq. 6. The result is an increase in stability.

Figure 3 shows normalized growth rate vs. scaled experimental rotation for the given

NSTX discharge for the same variations of experimental ν2 used in Fig. 2. One can clearly

see that a stabilizing resonance with the ion precession drift frequency occurs at low rotation

(0.2 < ωφ/ω
exp

φ < 0.7) and with bounce and transit frequencies at higher rotation (ωφ/ω
exp

φ >

1.6) while in-between these there exists a narrow range of off-resonance rotation profiles with

marginal stability (1.3 < ωφ/ω
exp

φ < 1.5).

In general, from Eqs. 5 and 6, and Figs. 2 and 3, we can say that with other parameters

equal, the reduced collisionality expected in future devices can enhance the RWM stability of

on-resonance plasmas (an effect that can also be seen in Fig. 6 of Ref. 14), while leaving the
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FIG. 3. (Color online) γτw vs. ωφ/ωexp
φ for NSTX shot 140132 @ 0.704 s at various levels of scaled

ν2.

reduced stability of off-resonance plasmas roughly unchanged. In conjunction with kinetic

resonances, collisions play a different role that can appear contradictory when compared to

simpler models. This is because reduced collisions reduce the collisional dissipation that is

important when plasma rotational resonances are not present, but also reduce the damping

of resonant kinetic stabilizing effects, allowing them to be more powerful - two competing

effects. This behavior is in contrast to the predictions of previous models [3, 7], where

decreased νeff was thought to be universally destabilizing.

Conclusion.– Collisionality appears in the frequency resonance term of δWK in kinetic

RWM stability theory. Electrons collide with ions so frequently that their contribution to

δWK becomes small. Ion-ion collision frequency, however, is in the range of other important

plasma frequencies, making the choice of collisionality model important. Changing from a

collisionless case to an energy-dependent collision model affects the trapped ion δWK when

the plasma is off-resonance and mainly the trapped ion Re(δWK) when it is on-resonance.

Finally, varying the ion-ion collisionality by an order of magnitude can have a significant

effect on the calculated growth rate of the RWM. In future devices with lower collisionality

the amount of variation of the plasma stability will increase for a given change in plasma

rotation, making it especially important to avoid the more sudden approach to unstable

off-resonance ωφ through plasma rotation profile control, or through active mode control

when such unstable ωφ profiles occur.
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