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The Spectral Slope and Kolmogorov Constant of MHD turbulence

A. Beresnyak
Los Alamos National Laboratory, Los Alamos, NM, 87545

The spectral slope of strong MHD turbulence has recently been a matter of controversy. While
Goldreich-Sridhar model [1] predicts -5/3 slope, shallower slopes have been observed in numerics.
We argue that earlier numerics were affected by driving due to a diffuse locality of energy transfer.
Our highest-resolution simulation (30722 × 1024) exhibited the asymptotic −5/3 scaling. We also
discovered that the dynamic alignment, proposed in models with -3/2 slope, saturates and can not
modify the asymptotic, high Reynolds number slope. From the observed −5/3 scaling we measured
the Kolmogorov constant CKA = 3.27 ± 0.07 for Alfvénic turbulence and CK = 4.2 ± 0.2 for full
MHD turbulence, which is higher than the hydrodynamic value of 1.64. This larger CK indicates
inefficient energy transfer in MHD turbulence, which is in agreement with diffuse locality.

PACS numbers: 52.65.Kj, 52.30.Cv, 47.27.Jv, 95.30.Qd, 52.35.Ra, 47.27.E-, 52.30.Cv

Introduction. — The equations of incompressible ideal
magnetohydrodynamics, written in terms of Elsasser
variables closely resemble Euler’s equation.

∂tw
± + Ŝ(w∓ · ∇)w± = 0, (1)

where w
± = v ± b, b = B/(4πρ)1/2, Ŝ = (1−∇∆−1∇).

This resemblance is misleading, as the local mean field b,
known as Alfven speed vA, will dominate the dynamics
on small scales [2]. A proper perturbation theory, how-
ever, revealed that MHD turbulence has a tendency of
becoming stronger on smaller scales [3]. The turbulence
strength, approximated as ξ = wk⊥/vAk‖, which is the
ratio of the mean-field term to the nonlinear term, will
increase due to the increasing anisotropy k⊥/k‖. As tur-
bulence becomes marginally strong (ξ ∼ 1), the cascad-
ing timescales become close to the dynamical timescales
τcasc ∼ τdyn = 1/wk⊥. The perturbation frequency ω,
however, has a lower bound due to an uncertainty rela-
tion τcascω > 1 [1]. Another bound on ω due to the direc-

tional uncertainty of the vA is consistent with previous
bound in case of “balanced” turbulence with δw+ ≈ δw−,
which we consider in this Letter, but lead to a modified
relation in the “imbalanced” case [4]. The combination
of the lower bound ξ ≤ 1 and the tendency of nonlinear
interactions to increase ξ will lock ξ “critically balanced”
with ξ ∼ 1. Thus the cascade will be strong and will
have a Kolmogorov’s -5/3 spectrum. The perturbations
will be anisotropic with respect to the local mean mag-

netic field with k‖ ∼ k
2/3
⊥ [1].

One can further simplify Eq. 1 by neglecting the
term (δw∓

‖ ∇‖)δw
± which is much smaller than the mean

field term (vA∇‖)δw
±. After this Eq. 1 splits into

two equations, one for δw±
‖ , which, in this strongly

anisotropic case, k‖ ≪ k⊥ represents slow (or pseudo-

Alfvén) mode and the equation for δw±
⊥ which represent

Alfvénic mode. The equation for slow mode is passive
and does not provide any back-reaction for the Alfvénic
equation ∂tδw

±
⊥∓ (vA ·∇‖)δw

±
⊥ + Ŝ(δw∓

⊥ ·∇⊥)δw±
⊥ = 0,

known as reduced MHD approximation or RMHD [5].

RMHD has a precise two-parametric symmetry with re-
spect to the anisotropy and the strength of the mean field:
w → wA, λ → λB, t → tB/A, Λ → ΛB/A, which is
similar to hydrodynamic symmetry. Here λ is a perpen-
dicular scale, Λ is a parallel scale, A and B are arbitrary
parameters. Due to this precise symmetry one can hy-
pothesize that strong Alfvénic turbulence has a universal
regime, similar to hydrodynamic universal cascade of A.
Kolmogorov [6]. In nature, the universal regime for MHD
can be achieved with δw± ≪ vA. In numerical simula-
tions, we can directly solve RMHD equations, which have
precise symmetry already built in. From practical view-
point, the statistics from the full MHD simulation with
δw± ∼ 0.1vA is virtually indistinguishable from RMHD
statistics and even δw± ∼ vA are fairly similar to the
former [7]. In this paper we use both full MHD sim-
ulations and RMHD simulations. Statistically isotropic
MHD simulation is used to determine a fraction of total
energy contained in the slow mode, while RMHD sim-
ulations are used to study properties of the universal
Alfvénic turbulence. Previous numerical work confirmed
scale-dependent anisotropy of the strong MHD turbu-
lence [8]. The precise value of the spectral slope, however,
was a matter of debate. In particular, [9] claimed that the
mean field strong turbulence has a slope of −3/2. This
motivated adjustments to the Goldreich-Sridhar model
[10–12]. A model with so called “dynamic alignment”
[11, 13] became popular after the scale-dependent align-
ment was discovered in numerical simulations [14]. This
model is based on the idea that the alignment between ve-
locity and magnetic perturbations decreases the strength
of the interaction, also it assumes that the alignment is
a power-law function of scale, increasing indefinitely to-
wards small scales and modifying the spectral slope of
MHD turbulence from the −5/3 Kolmogorov slope to
−3/2 slope. In this paper we critically examine the as-
sumption that the alignment is a power-law function of
scale. We also show that earlier measurements of the
MHD slope were premature due to diffuse scale-locality
of the energy transfer in MHD turbulence.
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TABLE I: Three-dimensional simulations

Run Type nx · ny · nz Dissipation 〈ǫ〉 L/η
H1 hydro 5123 −3.02 · 10−4k2 0.091 190
H2 hydro 10243 −1.20 · 10−4k2 0.091 370
M1 MHD 10243 −1.63 · 10−9k4 0.159 280
R1 RMHD 256 · 7682 −6.82 · 10−14k6 0.073 280
R2 RMHD 512 · 15362 −1.51 · 10−15k6 0.073 570

R2.5 RMHD 15363 −1.51 · 10−15k6 0.073 570
R3 RMHD 1024 · 30722 −3.33 · 10−17k6 0.073 1100

Numerical methods.— Pseudospectral dealiased code
was used to solve hydrodynamic, MHD and RMHD equa-
tions. The RHS of Eq. 1 had an explicit dissipation
term −νn(−∇2)n/2

w
± and forcing term f . The code

and the choice for numerical resolution, driving, etc, was
described in great detail in our earlier publications [7,
15, 16]. Table 1 shows the parameters of the simulations.
The Kolmogorov scale is defined as η = (ν3

n/ǫ)1/(3n−2),
the integral scale L = 3π/4E

∫ ∞

0
k−1E(k) dk (which was

approximately 0.79 for R1-3). Dimensionless ratio L/η
could serve as a “length of the spectrum”, although usu-
ally spectrum is around an order of magnitude shorter.

The resolution in the direction parallel to the mean
magnetic field, nx was reduced by a factor of 3 for sim-
ulations R1-3. This was possible due to an empirically
known lack of energy in the parallel direction in k-space.
We ran a simulation R2.5 which has full resolution in
nx to compare with R2 and check the influence of this
resolution reduction on the power spectrum. Although
the bottleneck effect was slightly less pronounced in R2.5
compared to R2, there was only a small influence in the
inertial range. We concluded that using nx reduced by a
factor of 2 or 3 is possible.

For the purpose of this paper we used driving that had
a constant energy injection rate. In RMHD simulations
R1-3 we drove turbulence to the amplitude that it will be
strong on the outer scale. R1-3 were started from lower-
resolution simulation that reached stationary state and
were further evolved in high resolution for approximately
12 Alfvénic times, which, for strong MHD turbulence also
correspond to about 12 dynamical times. The averaged
quantities were obtained for the last 6 Alfvénic times.
In all magnetic simulations M1, R1-3, we were using hy-
perviscosity (n > 2) instead of normal viscosity. This is
possible due to the fact that bottleneck effect is much
less pronounced in the MHD case, compared to hydro.

Spectra and universality.— Much of the study of hydro-
dynamic turbulence was dedicated to Kolmogorov model
which assumes a universal cascade of energy through
scales [6]. This model predicts that the power spec-
trum of velocity, E(k), will be a power-law function of
wavenumber k, E(k) = CKǫ2/3k−5/3, where CK is called
Kolmogorov constant. This scaling has an intermittency
correction (kL)α, where L is an outer scale and α ≈ 0.035

FIG. 1: Our hydrodynamic simulations H1 and H2 reproduce
well CK = 1.64 reported in earlier studies [17]. The cube
on the right illustrates that the small scale dynamics in large
10243 simulation reproduces small scale dynamics in eight
5123 simulations as long as turbulence is scale-local and the
effects of large scales could be neglected in the inertial range.
This is confirmed by numerical convergence of H1 and H2.

[18], but in simulations or measurements with small in-
ertial range it can neglected. A compilation of experi-
mental results for hydrodynamic turbulence [19] suggests
that a Kolmogorov constant is universal for a wide variety
of flows. High-resolution simulations of isotropic incom-
pressible hydrodynamic turbulence [17] suggest the same
value for this universal constant.

A robust method for determining the spectral slope
and the Kolmogorov constant from simulations is a res-
olution study [17], when a number of numerical exper-
iments are performed with different resolution and the
spectra are plotted with respect to the dimensionless
wavevector, kη. A physical meaning of such a compar-
ison is based on an assumption that a simulation with
higher numerical resolution can be considered both as
a simulation resolving smaller physical scales and as a
simulation of a larger volume of turbulence, see Fig. 1.
This assumption is true as long as turbulence can be
considered scale-local, i.e. the effects of driving can be
neglected in the inertial range. Our hydrodynamic sim-
ulations reveal a good convergence of spectra with nu-
merical resolution and show a universal Kolmogorov con-
stant consistent with the one obtained in [17]. Also the
shape of the dissipation range is similar to the one in
aforementioned paper. Despite moderate resolution, the
inertial ranges converge, which is due to locality of hy-
drodynamic cascade in spacial scales, making it possible
to consider higher and lower resolution simulations on
common ground, neglecting the influence of large scales,
where energy is provided by driving.

Fig. 2 presents a resolution study for simulations R1-3
determining the spectral slope and Kolmogorov constant
for Alfvénic turbulence. First, we note that if MHD
turbulence had the above mentioned spectral slope of
−3/2 the outer scale point, marked by a cross on Fig. 2
would be going down between R1 to R3 by a factor of
1.26. Instead, it stays at about the same level, indicating
that deviations from −5/3 slope are empirically known
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FIG. 2: Resolution study for RMHD simulations R1-R3. Both
axis are dimensionless. The numerical convergence is observed
at the dissipation scale, which features well-defined bottleneck
bump and at the inertial range which is immediately adjacent
to the dissipation scale. The scales within the order of mag-
nitude of the driving scale do not show convergence. This is
an indication that MHD turbulence is less local than hydro-
dynamic turbulence, in agreement with an earlier claim [15].
Thus, convergence in MHD requires higher resolution.

to be small. The flat part of the normalized spectrum on
Fig. 2 in R3 simulation between k = 54 (kη ≈ 0.037) and
k = 91 (kη ≈ 0.063) with central frequency k = 70 was
fit to obtain Kolmogorov constant. The value obtained in
this fit was CK = 3.27± 0.07 where the error was mostly
due to fluctuations of normalized spectrum with time.

Dynamic alignment.— It was suggested in [11, 13]
that the spectral slope of MHD turbulence is modified
by so-called “dynamic alignment” that increases indefi-
nitely towards small scales as λ1/4. In our earlier stud-
ies [14, 15] we measured several types of alignment and
found no evidence that all alignment measures follow
the same scaling. In this paper we confirm this find-
ing with higher-resolution simulations, in addition we
found that all alignment measures saturate, i.e. ap-
proach an asymptotic constant value on small scales.
Fig. 3 shows the alignment measures in R3, where
AA, AA2, DA and PI are different alignment measures:
AA = 〈|δw+

λ × δw−
λ |/|δw+

λ ||δw
−
λ |〉, AA2 = 〈|δv+

λ ×
δb−

λ |/|δv
+
λ ||δb−

λ |〉, PI = 〈|δw+
λ × δw−

λ |〉/〈|δw+
λ ||δw

−
λ |〉,

DA = 〈|δv+
λ ×δb−

λ |〉/〈|δv
+
λ ||δb−

λ |〉, for motivation and de-
tails see [14, 15]. The ratio of smallest values of DA in R2
and R3 was 1.02 which is inconsistent with 21/4 ≈ 1.19
predicted by [11, 13].

We are not aware of any convincing physical argumen-
tation explaining why alignment should be a power-law
of scale. Paper [13] argues that alignment will tend to
increase, but will be bounded by field wandering, i.e.
the alignment on each scale will be created indepen-
dently of other scales and will be proportional to the
relative perturbation amplitude δB/B. But this vio-
lates two-parametric symmetry of RMHD equations men-
tioned above, which suggests that field wandering can
not destroy alignment or imbalance. Indeed, a perfectly

FIG. 3: Dynamic alignment saturates towards small scales
before the dissipation scale. This indicates that the scale-
dependent alignment is a transient effect that is present in
simulations due to MHD turbulence being less local. The
asymptotic regime of MHD turbulence is showing constant
alignment, which will not modify the spectral slope −5/3 of
strong MHD turbulence (GS95 slope).

aligned state, e.g., with δw− = 0 is a precise solution of
MHD equations and it is not destroyed by its own field
wandering. The alignment measured in simulations of
strong MHD turbulence with different values of δBL/B0

showed very little or no dependence on this parameter
[15]. Fig. 3 also demonstrates a difference in scaling be-
tween alignment measures and the first-order structure
function of the amplitude, i.e., 〈|δwλ|〉. According to [13]
they should scale the same way, but this is not observed.
The transition region λ = 0.02 ÷ 0.2 for alignment is so
wide, possibly, due to the diffuse locality [15].

To summarize, our numerical data are consistent with
alignment measures becoming constant in the inertial
range and inconsistent with the hypothesis that they de-
pend as λ1/4 on scale. This crucial observation suggests
that the alignment of the fields is unlikely to significantly
modify the expected −5/3 spectral slope of strong MHD
turbulence with mean field, proposed in [1], also we do
not see any reason to favor the −3/2 slope.

The amount of slow mode and the total Kolmogorov

constant for MHD turbulence.— Full incompressible
MHD turbulence have a cascade of slow mode, which
was not included in our RMHD simulations R1-3. Al-
though in nature slow mode is often damped, it is nor-
mally present in full MHD incompressible simulations,
e.g. the ones presented in [9, 20]. The passive cascade
of slow mode will have the same energy spectrum as the
Alfvénic mode, and the total Kolmogorov constant for
MHD turbulence will be expressed as

CK = CKA(1 + Cs)
1/3. (2)

Where Cs is the ratio of slow to Alfvénic energies. This
ratio could depend on how MHD turbulence is driven.
Many previous studies simulated MHD turbulence with
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zero mean field and statistically isotropic forcing, which
is motivated by the lack of imposed field in astrophysical
systems. These studies estimated Kolmogorov constant
directly [20]. Our study uses a less straightforward ap-
proach, measuring Cs from a simulation with zero mean
field and substituting it into Eq. 2. This approach is mo-
tivated by our finding that MHD turbulence is less local
and therefore it is much harder to achieve an asymp-
totic universal cascade using zero-mean field simulation.
The transition to the strong local mean field case will re-
quire at least a couple of orders of magnitude in scale and
the subsequent transition to universal cascade, as we ob-
served in the previous section, will take about two orders
of magnitude in scale. Therefore, in currently available
zero mean field simulations it is impossible to observe the
universal cascade.

The “natural” value of Cs is unity, because the incom-
pressible MHD equations have four degrees of freedom,
out of which Alfvénic mode uses two and slow mode also
uses two. Having the same amount of degrees of freedom
and the isotropic driving that does not prefer any direc-
tion we would expect that the energy will be distributed
equally between the modes. We measured how energy is
partitioned on small scales of simulation M1 by making
a local Fourier transform of smaller cubes and decom-
posing into modes with respect to the local mean field.
The measured partition of energy is Cs ≈ 1.3. Although
statistical errors in this measurement are small, in a sim-
ulation with finite resolution Cs could deviate from its
asymtotic value. Conservatively, we will assume that Cs

is between 1, which is equipartition, and 1.3, which is
observed in our simulation M1. The total Kolmogorov
constant, therefore, will be estimated as 4.2 ± 0.2.

Scale locality and Kolmogorov constant. — The con-
tribution to energy flux through a particular scale from
different k wavebands have an analytical upper bound
that can be interpreted as a scale-locality constraint [21].
This upper bound, however, is absolute, while the local-
ity from practical viewpoint is constrained by a measure
relative to the actual energy flux. Therefore, this locality
constraint depends on the efficiency of the energy trans-
fer, such as the efficient energy transfer must be local,
while inefficient one could be nonlocal [16]. Quantita-
tively, the upper bound on the ratio of scales significantly
contributing to the energy transfer will scale asymptoti-

cally as C
9/4
K . As we observe larger CK in MHD turbu-

lence compared to hydrodynamic turbulence, the former
could be less local than the latter, which is consistent
with our earlier findings [15].

Discussion. — Previous measurements of the slope
usually relied on the highest-resolution simulation and
fitted the slope in the fixed k-range close to driving scale
typically between k = 5 and k = 20. In this paper we
argue that such a fit is unphysical and instead one should
fit a fixed kη range. In the former case the result would
be a shallower spectral slope due to proximity to the

outer scale and driving. In the latter case the effect of
the driving will diminish with increasing resolution and
one will observe shallower spectra at small resolutions
that will become steeper with increasing resolution. For
a more general imbalanced case and its smooth transition
to the balanced limit considered in this paper see [4, 7, 16]
and references therein.

Earlier measurements of Kolmogorov constant in MHD
turbulence reported lower values than this study, e.g.
CK = 2.2 in [20]. We believe this is due to insufficient
resolution in those simulations, which prevented the ob-
servation of the asymptotic regime. In particular, in the
case of statistically isotropic simulations like the ones in
[20] a transition to small scale subAlfvénic regime precede
the transition to asymptotic regime. These two tran-
sitions require numerical resolution that is even higher
than the highest resolution presented in this paper and
for now seems computationally impossible. Our own sta-
tistically isotropic simulation M1 shows Kolmogorov con-
stant of 3.5, which is still only a lower limit, consistent
with 4.2 ± 0.2 derived here.
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