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We study the behavior of thin elastic sheets that are bent and strained under the influence of
weak, smooth confinement. We show that the emerging shapes exhibit the coexistence of two
types of domains that reflect different constraints. A focused-stress patch is subject to a geometric,
piecewise-inextensibility constraint, whereas a diffuse-stress region is characterized by a mechanical
constraint - the dominance of a single component of the stress tensor. We discuss the implications
of our findings for the analysis of elastic sheets that are subject to various types of forcing.

The geometry and mechanics of elastic sheets have re-
cently become a focus of intense activity for chemists,
biologists, engineers, and physicists [1, 2]. This interest
has been driven in part by studies that demonstrated its
relevance to biological tissues [3, 4], and by technological
advance that enabled the production of extremely thin
films with precise material properties [5, 6]. Such thin
sheets undergo a buckling instability even under minor
compressions, so their typical state is far above threshold,
where the energetic cost of straining is much larger than
that of bending [2]. In such situations traditional pertur-
bation methods for sheets close to buckling threshold [7]
are no longer available, and a full nonlinear analysis of the
system is required. A major theoretical challenge here is
the development of a formalism that effectively addresses
the configurations realized by elastic sheets as their thick-
ness becomes exceedingly small. A central question for
such a theory is what are the basic “building blocks” that
compose these asymptotic shapes.

Singular types of building blocks include developable
cones (“d-cones”) [8, 9] and “minimal ridges” [10, 11],
which are reflected in the branched network of vertices
and sharp folds in a crumpled paper [2]. In the limit
of an infinitely thin sheet, these asymptote to points or
lines. This behavior manifests a consequence of Gauss’s
Theorem Egregium, according to which patches that are
curved in two directions must be strained [2]. These sin-
gular structures focus elastic energy in small regions that
are highly bent and hence strained, creating an asymptot-
ically piecewise-inextensible (origami-like) shape in which
the rest of the sheet remains unstrained in flat facets.
Stress focusing has been a subject of many studies in
the last two decades [2]. However, it has become clear
that shapes of thin sheets are not fully describable by
the stress focusing idea. For example, it is known that
uniaxial tension leads to smooth wrinkling patterns that
are curved (hence strained) everywhere in both directions
[12, 13]. Even without exerted tension, certain boundary
conditions [14] lead to shapes that reflect a smooth distri-
bution of strain and curvature. It was even proposed that
stress focusing may appear only under large confinement
[15] or in response to sharp boundaries [11], although re-

cent results may suggest that this is not the case [16]. We
are thus led to ask a number of fundamental questions:
What type of boundary conditions yield singular struc-
tures? Are there other fundamental structures that are
necessary for describing the configurations of thin sheets?

Motivated by these questions, we study in this Letter
a sheet under simple confinement, representative of the
general class of boundary conditions that are not “tai-
lored” to yield a piecewise-inextensible shape. Our re-
sults render three important messages: First, we show
that a focused-stress structure appears even under weak,
smooth confinement. Second, a focused-stress zone may
coexist with a large region in which energy is smoothly
distributed. This “diffuse-stress” zone constitutes a new,
so far largely overlooked, building block. Third, in con-
trast to stress focusing, diffuse-stress domains are not
dominated by a geometric constraint but rather by a me-
chanical one: the vanishing ratio between compressive
and tensile components of the stress tensor. Our observa-
tions suggest a cornerstone for a theory of the asymptotic
shapes of thin sheets under general conditions.

Our system, Fig. 1a, consists of a semi-infinite rectan-
gular sheet of thickness t where one long edge, say y=W ,
is displaced inward by ∆̃W with ∆̃ ≪ 1. Far from the

edge at x=0, a sufficiently thin sheet (t ≪
√

∆̃W ) would
naturally buckle to an asymptotically x-independent
shape ζ1(x, y)= A1 cos(πy/W ). At x=0 we impose a “3-
buckle” profile ζ3(x=0, y)= A3 cos(3πy/W ), required to
lie in the y-z plane. Absence of strain at the boundaries

implies: Aj ≈ 2
√

∆̃W/jπ. The transition between the
3-buckle and 1-buckle shapes requires the formation of a
strained region, curved in both directions. It is the struc-
ture of this strained region that we address here. Our
choice of boundary conditions is motivated by several
reasons: (a) The strainless 1-buckle and 3-buckle shapes
are, respectively, the asymptotic ground state and a low-
energy meta-stable state of the bending energy (1) under
one-dimensional confinement. Similarly to the universal
nature of phase transformation, e.g. between solid and
super-cooled liquid, the transition between the strainless
states can be expected to be a generic form for accommo-
dating unavoidable strain, rather than a shape dependent
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FIG. 1: (a) A semi-infinite sheet of width W confined in one

direction by a distance ∆̃W . The near end of the sheet is
forced into a 3-buckle shape in the y-z plane. (b) The shape

of a sheet with t/W = 0.002, ∆̃ = 0.1, and ν = 1

3
. Note

the extended smooth area near the prescribed edge, which
eventually terminates in a focused structure. (c) When the
prescribed edge is allowed to be non-planar, the sheet has
only a focused stress region. (d) The centerline profiles for
the shapes in (b) (black) and (c) (gray).

on the specific boundary conditions. In contrast, other
studies directly induce strain by pinching [14, 17] or flat-
tening [18, 19] an edge of a confined sheet. (b) Despite
the nontrivial structure of the strained region, the sim-
plicity of our system allows quantitative description both
numerically and analytically. This enables us to clearly
distinguish between “diffuse-stress” and “focused-stress”
types of building blocks, and to formulate general asymp-
totic conditions that could be used under more compli-
cated constraints. (c) Beyond the general lessons drawn
from this system, it deserves its own right as a natural
“unit cell” of hierarchical, multi-scale patterns on elastic
sheets [13, 18–22].

The configuration of the sheet is found by minimizing
the Föppl–von Kármán (FvK) elastic energy, U = US +
UB, which contains stretching and bending terms [7]:

US =
1

2

∫

dxdy σijuij ; UB =
1

2
B

∫

dxdy (∇2ζ)2 (1)

σij =
Y

1 − ν2
[(1−ν)uij + νδijukk]. (2)

Y = Et and B = Et3/12(1 − ν2) are, respectively, the
stretching and bending modulii, E is the Young modulus,
and ν is the Poisson ratio. The (geometric) nonlinearity
of U comes from the strain uij = 1

2
(∂iuj +∂jui+∂iζ∂jζ).

We use the software Surface Evolver [23] to minimize U
on a rectangular sheet. One end of the sheet is fixed to
the 3-buckle shape while the other is free. The sheet is
long enough that the free end takes the 1-buckle shape.
No bending moment is applied to the long edges.

A representative shape, shown in Fig. 1b, exhibits

FIG. 2: (a) The density of stretching energy in the diffuse-
stress region of Fig. 1b. The prescribed edge is at the left. The
energy density is well approximated as A(x) exp[−(y/w(x))2]

. (b) When plotted against x̄ = xτ 1/2/W , the width w(x̄) is
independent of thickness (t/W as indicated).

two prominent features. First, the transition terminates
sharply at a small, stress-focusing zone, beyond which
the 1-buckle shape is approached. Notably, this focused-
stressed structure appears under weak, smooth confine-
ment, unlike the d-cones and ridges of [9–11]. Second,
the transition between the two states occurs over a large
distance Lt, which diverges as t−1/2 as t is reduced.
Similar scaling was observed in a pinched cylindrical
shape [14, 24], and was shown to arise from a compe-
tition between two dominant energies: excess bending
(favoring small Lt) and stretching (favoring large Lt). A
similar type of balance has been noted already in [18–
20]. The bending energy is dominated by the curva-

ture in the ŷ direction, κ ∼

√

∆̃/W , while the in-plane
stretching is dominated by strain along x̂, estimated as
uxx ∼ ( ∂ζ

∂x)2 ∼ ∆̃(W/Lt)
2. Balancing the two energies

Bκ2 ∼ Y u2

xx, we obtain

Lt ∼ W/τ1/2 and U ∼ EW 3(τ∆̃)5/2 , (3)

where τ ≡ t/
(

W
√

∆̃
)

is an effective (dimensionless)

measure of the thickness. Far from buckling threshold
τ ≪ 1. Notably, this argument suggests that in the
transition region stress is not focused; instead stress is
smoothly distributed over area WLt that diverges as
t→0. Figure 2 demonstrates that the lateral extent w(x)
of the highly stressed region is a finite, thickness inde-
pendent fraction of the width W , while the length scales
with Lt, as seen in the rescaling with x̄ ≡ xτ1/2/W . We
therefore identify this as a diffuse-stress region.

This observation is not inconsistent with the
previously-noted stress focusing apparent near x ≈ Lt,
as the diffuse-stress region terminates at x̄∗ ≈ 0.32, be-
yond which a typical focused-stress structure appears.
This structure resembles a d-cone whose characteristic
features become sharper as t is reduced, consistently with
known scaling laws [9, 17]. In contrast to the diverging
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FIG. 3: The diagonal stress components σxx and σyy, mea-
sured along the centerline of the shapes and plotted against
the scaled x̄, for the simulations of Fig. 2b (same legend). The
data collapse when σxx is rescaled by τ (top) and σyy by τ 2

(bottom). Inset, the unscaled stresses, also plotted against x̄.

size WLt of the diffuse-stressed region, the focused-stress
structure is confined to an area ∼ W 2.

Our results demonstrate the emergence of a focused-
stress domain in response to smooth strainless confine-
ment, and its coexistence with a large diffuse-stress re-
gion. Evidence for the general occurrence of such shapes
can be obtained by allowing the planar edge profile to ro-
tate an arbitrary angle θ around the y axis [ux(x=0, y) =
A3 cos θ cos(3πy/W )]. While this freedom does slightly
modify the shape, we found no qualitative change unless
the edge was allowed to assume a nonplanar shape [i.e.
an arbitrary ux(x=0, y)]. In this case, shown in Fig. 1c,
only a focused-stress structure appears near the edge,
giving way to the single buckle after a distance Lt ∼ W .
This length does not depend on thickness, reflecting the
geometrical nature of the inextensibility constraint [25].
The energy associated with this focused-stress structure
is observed to scale with τ8/3 [26], similar to the energy
scaling of minimal ridges [2, 10]. This energy is asymptot-
ically negligible relative to the diffuse-stress energy, (3).
The “fine-tuning” required to eliminate the diffuse-stress
region suggests that although stress focusing is energet-
ically favorable, it is generally insufficient to relieve the
strain in a confined sheet. The diffuse-stress region seems
to be the “second best” alternative, and hence we con-
jecture that a coexistence of these two building blocks,
focused-stress and diffuse-stress, is a general feature of
very thin sheets under arbitrary confinements.

The coexistence of these two markedly different regions
in a single shape raises the expectation that an analytic
approach to the problem requires the matching of two
distinct types of asymptotic expansions. The asymptotic
nature of focused-stress structures is known to reflect a
geometric principle [2]: a piecewise-inextensible shape,
with vertices and ridges whose size vanishes as t → 0.
Our next step is then to obtain a second, analogous cri-
terion for the asymptotic description of diffused-stress
structures.

As seen in the estimation of the energies, the diffuse-
stress region is characterized by a diverging aspect ra-
tio: W/Lt → 0 as τ → 0. This feature is associ-
ated with a mechanical constraint: a vanishing ratio be-
tween compressive and tensile stress components. This
is seen most clearly by considering the Airy potential
χ(x, y) [7]. The scaling behavior leading to Eq. (3)
suggests that in the limit τ ≪ 1 Airy potentials of
sheets with various thicknesses satisfy a scaling solution:
χ(x, y) = τ∆̃Y W 2 g(x̄, y

W ). Since g is a function only of
the rescaled coordinates, it depends only on the geometry
of the system and boundary conditions. The prefactor is
chosen to satisfy the scaling relations (3). Because of the
different scaling of x and y derivatives, the asymptotic
stresses scale as:

σxx ∼ Y ∆̃τ σyy ∼ Y ∆̃τ2 σxy ∼ Y ∆̃τ3/2. (4)

This asymptotic behavior is confirmed in Fig. 3, and
shows that as τ → 0 a single stress component σxx be-
comes dominant. This is unlike the asymptotic behavior
of the strain, where Eqs. (2,4) imply:

uxx ∼ ∆̃τ uyy ∼ −ν∆̃τ uxy ∼ ∆̃τ3/2 , (5)

This leads us to conjecture that a diffuse-stress region is
generally characterized by a vanishing stress ratio:

σyy/σxx → 0 as τ → 0 , (6)

regardless of the Poisson ratio. This mechanical prop-
erty stands in contrast to the geometric, piecewise-
inextensibility constraint that dominates focused-stress
structures. Condition (6) implies that the diffuse-stress
region must terminate where the tensile stress compo-
nent σxx vanishes, as it does for sufficiently large x, in
the single buckle region (whereas σyy remains finite for
any τ due to the confinement). This suggests that the
focused-stress region appears precisely where condition
(6) can no longer be satisfied.

The vanishing stress ratio throughout the whole
diffuse-stress region provides a basis for an asymptotic
expansion of the shape in the limit τ ≪ 1. The simple
geometry of our system enables us to demonstrate the
basic principle of this expansion, since a natural candi-
date for the asymptotic diffuse-stress shape is obtained
by a decomposition into two leading Fourier modes:

ζ(x̄, y) ≈ f1(x̄) cos(πy/W ) + f3(x̄) cos(3πy/W ) (7)
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FIG. 4: A linear-log plot of the first four odd Fourier modes
of the cross-sections of the shapes for t/W = 0.0005. Except
near the focused structure at x̄∗

≈ 0.32, modes higher than 3
are negligible, indicating that most of the shape is smooth.

for 0 < x̄ < x̄∗, where both functions f1(x̄), f3(x̄) remain
finite and higher order modes (e.g. fn(x̄) with n>3) van-
ish as τ →0. Intuitively, f3(x̄) is finite due to the imposed
3-buckle profile at x=0 whereas f1(x̄) must be finite in
the approach to the 1-buckle shape. The ansatz (7) is
supported by our numerics, Fig. 4. Obviously, the sim-
ple form (7) does not describe the focused-stress region.
The FvK equations [7] then provide a non-linear cou-
pling between the shape ζ(x̄, y) and the Airy potential
χ(x̄, y), and imply a similar asymptotic expansion for χ
that exhibits precisely the vanishing stress ratio (6) [27].
Equation (7) results from the simple geometry of Fig. 1,
but we expect that similarly smooth forms, composed
of finite number of suitable basis functions, describe the
shape and stress distribution of diffuse-stress domains in
more complicated geometries. In our case, for τ ≪ 1,
the FvK equations reduce to a set of coupled ordinary
differential equations (ODE) for f1(x̄) and f3(x̄). We
expect this reduction to ODE form to be characteristic
of diffuse-stress domains. A full solution would require
matching of the diffuse-stress shape (7) to the focused-
stress structure at x̄∗. The explicit form of the equations,
as well as the effective matching conditions, will be dis-
cussed elsewhere [26].

We conclude by noting the possible relevance of our
results for non-Euclidean elasticity, which addresses the
shape of sheets whose strainless state corresponds to
some nonflat “target” metric [4, 28]. Such sheets are nat-
urally bent even without any external confining forces,
and are often assumed to be close to an “isometric em-
bedding”, namely a strainless shape compatible with
the target metric. This reasoning is reminiscent of
focused-stress regions, wherein the sheet becomes strain-
less nearly everywhere except in ridges and vertices
that become infinitely narrow zones whose area vanishes
asymptotically. However, there may be domains analo-
gous to the diffuse-stress zones, where the strain becom-
ing small everywhere in a region of diverging size. Thus,
several distinct expansions would need to be stitched to-
gether to describe the whole sheet. It remains to be seen

whether such a scenario emerges in non-Euclidean sheets.
In summary, we identified two classes of elastic build-

ing blocks that can be described as focused-stress and
diffuse-stress, and showed how they coexist in elastic
sheets under weak, smooth confinement. These two
classes are distinguished not only by their stress distri-
butions, but also by their distinct characteristic energies
and different underlying asymptotic constraints: a geo-
metric constraint (piecewise inextensibility) for focused-
stress domains and a mechanical constraint (Eq. (6))
for diffuse-stress regions. These observations were made
by studying an elementary set-up that lead to coexis-
tence between a single focused-stress domain and a sin-
gle diffuse-stress region that channels stretching along a
direction dictated by the uniaxial confinement. Further
progress will be required to develop these concepts into
a theoretical toolbox that will allow efficient analysis of
thin sheets subject to general types of forcing.
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