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Abstract

We show that the critical behavior of quantum systems undergoing a percolation transition is

dramatically affected by their topological Berry phase 2πρ. For irrational ρ, we demonstrate that

the low-energy excitations of diluted Josephson-junctions arrays, quantum antiferromagnets, and

interacting bosons are spinless fermions with fractal spectrum. As a result, critical properties not

captured by the usual Ginzburg-Landau-Wilson description of phase transitions emerge, such as

complex critical exponents, log-periodic oscillations and dynamically broken scale-invariance.

1



A fundamental aspect of the Ginzburg-Landau-Wilson (GLW) description of phase tran-

sitions is scale invariance, which relies on the absence of characteristic length and energy

scales at criticality, leading to the concept of universality [1, 2]. For instance, near a quan-

tum critical point (QCP), if a physical observable O (T ) transforms for an arbitrary scale

transformation b > 0 according to O (T ) = b−xO (bzT ), then we obtain a power-law temper-

ature dependence O (T ) ∝ T x/z, with universal critical exponent x/z. However, if scaling is

valid only for powers of a discrete value b0, it follows that O (T ) = T x/zQ (ln T ), with Q (t)

a periodic function of period z ln b0. Fourier expansion of Q (t) yields:

O (T ) =

∞
∑

n=−∞

αnT x/z+i2πn/(z ln b0) (1)

with constant coefficients αn. Thus, the system is characterized by a family of non-universal

complex exponents. An invariant scale b0, leading to this discrete scale invariance, is found

in several critical systems that either are out of equilibrium or have an underlying built-in

hierarchical structure (for a review, see [3]).

In this Letter, we show that complex critical exponents and log-periodic behavior appear

in a variety of disordered systems close to a percolation QCP, such as Josephson-junction

(JJ) arrays, quantum antiferromagnets (QAF) and interacting bosons. Rather than being

related to non-equilibrium properties or to the fractality of the percolating cluster, in these

systems the invariant scale b0 emerges naturally in their low-energy excitation spectrum for

certain values of their Berry phase 2πρ.

By calculating their specific heat and compressibility at the percolation threshold, we

show that, for rational ρ, large clusters have the lowest excitation energies, giving rise to

usual power-law behavior below a crossover temperature T ∗, which varies in a pronounced

non-monotonic way with respect to ρ (see Fig. 1). For irrational ρ, the low-energy properties

are governed instead by degenerate clusters of intermediate sizes, leading to the breakdown of

continuous scale invariance (T ∗ → 0). Remarkably, the sizes and energies of these resonating

clusters depend solely on the continued-fraction expansion of ρ. As a result, when ρ is

a quadratic irrational, the periodicity of its continued-fraction expansion gives rise to an

invariant scale b0 and, consequently, to complex critical exponents.

To introduce a model for all the systems discussed above [2], consider an array of grains

characterized by an XY order parameter Ψj = |Ψ0| exp (iθj), with phase θj and fixed am-

plitude |Ψ0|. The array is diluted on a regular lattice of dimension d > 1, characterized by
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Figure 1: (a) In the diluted quantum system, the global phase (arrow) of clusters of connected grains

(dark/red) coherently precesses due to the Berry phase 2πρ. (b) Strong variation of the crossover

temperature T ∗ below which scaling with real-valued exponents holds (blue points, T0 ∼ U).

a quenched random-site variable ǫj that takes the values 0 and 1 with probabilities P and

(1 − P ), respectively. We consider the Hamiltonian [2, 4, 5]:

H = U
∑

i

ǫi (ni − ρ)2 −
∑

ij

ǫiǫjJij cos (θi − θj) , (2)

where ni = −i ∂
∂θi

. ρ can be externally controlled and causes the phase to precess in time

according to ∂θj/∂t = 2Uρ (see Fig. 1). In JJ-arrays [4, 5], Ψj denotes the superconducting

order parameter, Jij is the Josephson coupling, U is the charging energy and ρ, related to

the AC-Josephson effect, can be changed by an external gate voltage. Ψj can also represent

planar quantum rotors, associated with the low-energy modes of QAF [2], where ρ is pro-

portional to a perpendicular external magnetic field. For systems of interacting bosons[6, 7],

which can be realized in optical experiments with cold atoms [8], 2Uρ corresponds to the

chemical potential µ.

The effects of percolative dilution on all these systems have been the subject of various

experimental and numerical investigations [8–12]. Here, we focus on the critical properties

at the percolation threshold Pc, where the density of clusters with s connected occupied

sites varies as N (s) ∝ s−τ , with 2 < τ ≡ d/Df + 1 ≤ 2.5 and Df the fractal dimension
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of the percolating cluster [13]. At low temperatures T ≪ |Jij | and deep in the ordered

state of the clean system (U < |Jij|), the relative phase between grains inside each cluster

is fixed, implying that the entire cluster is characterized by a global phase [14–16]. At Pc,

contributions to the total specific heat of a single cluster arise from the coherent precession

of its global phase, C, and from the excitations of internal collective (spin-wave) modes

that change the relative phase between grains, Csw. As we will show below, Csw is sub-

leading; thus, similar to the behavior in superparamagnets, each size-s cluster can be treated

effectively as a big single rotor, with the corresponding action:

As = − s

4U

ˆ β

0

dτ̄

(

∂θ (τ̄)

∂τ̄
− iµ

)2

, (3)

which describes the coherent phase-precession due to both quantum fluctuations and the

Berry phase 2πρ. Notice that, unlike the case of SU(2) spins, the Berry phase of quantum

rotors has a topological character, since the imaginary part ABerry = isρ
´ β

0
dτ̄ ∂θ

∂τ̄
of As is

independent on the time evolution of θ (τ), enabling us to solve our problem using sums

over winding numbers. Shifting the imaginary time τ̄ → τ̄ /s in (3) eliminates the pre-factor

s at the expense of a cluster size dependent temperature T → sT and, most importantly,

Berry phase ρ → sρ. This yields the free energy scaling Fs (ρ, T ) = s−1F1 (sρ, sT ), from

which we can derive scaling relations for the heat capacity Cs (T ) = −T∂2Fs/∂T 2 and the

compressibility κs (T ) = −∂2Fs/∂µ2. Here, the suffix 1 (s) refers to quantities on a single

site (single cluster). Thus, macroscopic quantities can be calculated by averaging over all

clusters, i.e. O (ρ, T ) =
∑

s N (s)Os (ρ, T ).

Let us first revisit the results for ρ = 0, where universal power-law behavior was previ-

ously found [14]. The low-temperature specific heat of a cluster is given by Cs (ρ = 0) ∝
exp (−U/sT ), i.e. the typical excitation energy of a cluster decreases monotonically with its

size, εs = U/s. Then, the low-energy behavior is dominated by large clusters and we can

replace the sum over s by an integral, obtaining, for T ≪ U ,

C (ρ = 0, T ) ∝ T d/zr , (4)

where the dynamic scaling exponent zr = Df was introduced. This result was also found in

detailed computer simulations [17, 18]. Consider now a finite Berry phase ρ 6= 0. Solving

the problem of a single quantum rotor and using the scaling T → sT , ρ → sρ derived from

the action (3), we find the spectrum of a single cluster Em = U (m − sρ)2 /s, with m ∈ Z.
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Figure 2: Excitation energy εs as function of the cluster size s for the irrational ρ =
√

7. The

highlighted points correspond to energetically degenerate clusters associated to the Diophantine

approximant p/q = 37/14, and are responsible for a jump in the integrated density of states. The

inset shows the spectrum for the rational ρ = 37/7, characterized by four well-defined branches.

Therefore, the lowest excitation energy is (see also [6, 7]):

εs =
U

s
(1 − 2 |ρs|) , (5)

where ρs = sρ−
⌊

sρ + 1
2

⌋

and ⌊x⌋ is the integer part of x, i.e.
⌊

x + 1
2

⌋

is the integer closest to

x, such that |ρs| ≤ 1/2. Note that ρs depends on the droplet size in a highly non-monotonic

way, reflecting the periodicity of the Berry phase (see Fig. 2). Now, not only large clusters

yield small excitation energies, but also intermediate-size clusters with |ρs| . 1/2.

These low-energy excitations can be described by spinless fermions, yielding the

well-known fermionic expressions C1 (ω, T ) = (ω/T )2 nF (ω)nF (−ω) and κ1 (ω, T ) =

(1/T )nF (ω)nF (−ω) for the single site specific heat and compressibility, with nF (ω) the

Fermi function. In Fig. 3 we demonstrate this numerically by comparing C (T ) obtained

from the exact energy spectrum and from the fermionic expression only. We can also show
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this result analytically: Consider, for definiteness, 0 ≤ ρ ≤ 1/2. The spectrum of a single

rotor, including degeneracies, can be generated from a model of effective interacting fermions

and bosons, with occupation numbers nf = f †f and nb = b†b, respectively

H0 = U (nb + (1 − 2ρ) nf + ρ)2 . (6)

For ρ = 0, one recovers the N = 2 super-symmetric description of a rotor [19]. Expanding

for ρ ≃ 1/2, we obtain instead H0 ≃ ε1nf + Unb + Un2
b + 2ε1nbnf . While the excitation

energy of single bosons is U , the fermionic excitation energy is ε1 = U (1 − 2ρ) ≪ U .

Thus, at sufficiently low temperatures, bosons are diluted and the interaction terms can be

neglected, implying that free spinless fermions are the dominant excitations of the system.

The limit ρ → 1/2 also plays an important role in the excitation spectrum of droplets in the

Bose-glass phase [6] and in the insulating phase of interacting bosons in a disordered chain

[7].

Let us now consider ρ = p/q to be rational, i.e. p and q are integers with no common

divisors. Due to the periodicity of the Berry phase term, the number of distinct values of

ρs is of the order of q/2, defining well separated branches in εs, all decaying as s−1, with

lowest branch εs ≃ U (qs)−1 (see inset of Fig. 2). For T ≪ U/q2, the problem is virtually

the same as for ρ = 0, leading to a heat capacity dominated by very large clusters as given

in Eq.4 with the same exponent zr, as shown in Fig. 3. For the compressibility, we obtain

κ (T ) ∝ T d/zr−1, with a Wilson ratio (κT ) /C ≈ 0.3 for d = 2. Note, from Fig. 3, that the

crossover temperature T ∗ changes as q−2 and is insensitive to p. Thus, systems with similar

values of ρ can have very different T ∗ (see Fig. 1).

The natural question is: what happens in the regime U/q2 ≪ T ≪ U for very large

q? For irrational ρ, T ∗ → 0 and this regime prevails down to the lowest energies. Indeed,

when ρ is irrational, the sequence ρs is uniformly distributed between −1/2 and 1/2 [20],

i.e. there are finite-size droplets with arbitrarily low excitation energy εs. It is convenient

to introduce the averaged integrated density of fermionic states, D (ω) =
∑

s s−τθ (ω − εs);

from the periodicity of εs with respect to ρ (i.e. summing over winding numbers), we obtain,

for ω ≪ U :

D (ω) = ζ (τ − 1)
ω

U
+

∑

s,λ=±

fsaw (sxλ)

sτ
, (7)

where x± = ω/U ±2ρ, ζ (x) is the zeta function and fsaw (x) is the sawtooth function, which

has period 2 and unit jumps at every odd integer: fsaw (x) = (−x + 2n) /2 for 2n− 1 < x <
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Figure 3: Specific heat C as function of temperature T for the rational ρ = 55/89. The dashed blue

line is the exact result and the solid red line is the fermionic approximation. The onset of power-law

behavior is marked by T ∗(dotted line). The inset shows the log-log variation of T ∗ with respect to
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2n + 1. These jumps give rise to discontinuities in D (ω) at frequencies:

ωj = 2U

∣

∣

∣

∣

ρ − pj

qj

∣

∣

∣

∣

, (8)

where pj is an odd integer and qj is even. At ω ≪ U , the fractions pj/qj that satisfy Eq. (8)

are the ones that best approximate ρ, i.e. the Diophantine approximants, which are given

by the convergents of the continued fraction expansion of ρ [21]. Physically, the jumps are a

consequence of the existence of a set of energetically degenerate (i.e. “resonating”) clusters

with sizes that are odd multiples of qj/2, s = (n + 1/2) qj (see Fig. 2). Summing over all

these clusters in Eq. (7), we find that each jump in D (ω) is given by ∆j = q−τ
j ζ (τ) (2τ − 1).

Back to Eq. 7, we find that the regular part of the sawtooth function cancels out the linear

in ω term. Thus, the frequency dependence of D (ω) is governed by the successive jumps ∆j

7



at ωj of Eq. (8) and, consequently, by the sequence of convergents of the continued fraction

expansion of ρ with even denominator qj . Although the determination of this sequence for

an arbitrary irrational ρ is an outstanding problem in number theory, it is simplified in the

case of quadratic irrationals, which have periodic continued fraction expansions [21]. Then,

one finds that the sequence of even qj is also periodic.

In fact, for quadratic irrationals with a single period a ∈ Z, which are solutions of

the algebraic equation y2 − ay − 1 = 0, we find that if qj is even, so is qj+N , with

N = 2 + mod (a, 2). Consequently, the distance between consecutive jumps is a con-

stant in log-scale, ln (ωj/ωj+1) = 2N ln y+, as well as the ratio between their amplitudes,

ln (∆j/∆j+1) = τN ln y+, where y+ is the positive solution of the algebraic equation. Us-

ing these properties, we can show that D (ω) is a fractal function with fractal dimension

dω = τ/2, characterized by a power-law decay in ω and periodic oscillations in ln ω. Since

C (T ) =
´

dω ν (ω)C1 (ω, T ), where ν = dD/dω is the density of states, we obtain:

C (T ) = T d/zirA (ln T ) , (9)

where zir = 2Dfd/ (Df + d), i.e. zir > zr, and A (t) is a periodic function of period zir ln b0 ≡
2N ln y+. For the compressibility, we find κ (T ) = T (d/zir)−1B (ln T ), where B (t) has the

same period as A (t). Thus, the system has complex critical exponents as in Eq. (1). In Fig.

4, we show numerical results for ρ =
√

2; we also verified numerically that the scaling form

in Eq. 9 holds for quadratic irrationals ρ with more complicated continued-fraction periods.

For non-quadratic irrationals, our numerical calculations indicate that Eq. 9 still describes

the critical behavior, but now A (t) oscillates irregularly without a well-defined period.

The breakdown of continuous scale invariance for irrational ρ can be attributed to the

resonating clusters with arbitrarily low excitation energies, as they cause jumps in the entire

spectrum, prohibiting to replace
∑

s →
´

ds in Eq. 7. For rational ρ, such a replacement is

allowed, leading to full scaling s → s/bDf and to Eq. 4. Yet, when ρ is a quadratic irrational,

the dynamically broken scale invariance is partially restored as discrete scale invariance. In

this case, the periodic structure of the continued-fraction expansion of ρ gives rise to log-

periodic relations between sizes s = (n + 1/2) qj and energies ωj = 2U |ρ − pj/qj | of different

sets of resonating clusters, establishing an invariant scale b0 and complex critical exponents

(d/zirr) + inπ/ (N ln y+) for C (T ).

Going back to the contribution of the spin-waves, their density of states is νsw ∝ kds−1 at
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Pc, where the fracton dimension ds characterizes the spectrum of the eigenvalues k2 of the

Laplacian on the percolating cluster [13, 16]. From the spin-waves dispersion Ω2
s,k = ε2

s+c2k2

and the scaling properties of the fermionic density of states, we find Osw ∝ OT φ for both

O = C, κ, with φ = ds−1 (φ = ds−1/2) for rational (irrational) ρ. As ds > 1 [13], it follows

that φ > 0. Since the internal modes are sub-leading compared to the coherent modes, the

spectrum of a single cluster depends solely on its size and not on its shape, in accordance

to Eq. 3.

In summary, we solved the XY quantum-rotor problem at low T and close to the per-

colation threshold, which describes diluted systems as diverse as JJ-arrays with d.c.-bias

voltage, canted QAF in a perpendicular magnetic field, and interacting bosons coupled to

a particle reservoir. Their topological Berry phase 2πρ dramatically alters the percolation

QCP, since the low-T behavior is governed by emergent spinless fermions with fractal spec-

trum, giving rise to generally irregular log T -oscillations of thermodynamic variables. While

for irrational ρ they persist to T → 0, for rational ρ = p/q they occur in the temperature

range q−2 . T/U . 1, which can be broad for q ≫ 1. Remarkably, for a quadratic irrational

ρ, they become regular, leading to complex critical exponents. Our results demonstrate

that the quantum criticality in disordered systems governed by a topological Berry phase is

beyond the GLW paradigm of critical systems.
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