

## CHCRUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

## Complex Critical Exponents for Percolation Transitions in Josephson-Junction Arrays, Antiferromagnets, and Interacting Bosons

Rafael M. Fernandes and Jörg Schmalian Phys. Rev. Lett. **106**, 067004 — Published 11 February 2011 DOI: 10.1103/PhysRevLett.106.067004

## Complex critical exponents for percolation transitions in Josephson-junction arrays, antiferromagnets, and interacting bosons

Rafael M. Fernandes and Jörg Schmalian

Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011

## Abstract

We show that the critical behavior of quantum systems undergoing a percolation transition is dramatically affected by their topological Berry phase  $2\pi\rho$ . For irrational  $\rho$ , we demonstrate that the low-energy excitations of diluted Josephson-junctions arrays, quantum antiferromagnets, and interacting bosons are spinless fermions with fractal spectrum. As a result, critical properties not captured by the usual Ginzburg-Landau-Wilson description of phase transitions emerge, such as complex critical exponents, log-periodic oscillations and dynamically broken scale-invariance.



A fundamental aspect of the Ginzburg-Landau-Wilson (GLW) description of phase transitions is scale invariance, which relies on the absence of characteristic length and energy scales at criticality, leading to the concept of universality [1, 2]. For instance, near a quantum critical point (QCP), if a physical observable O(T) transforms for an arbitrary scale transformation b > 0 according to  $O(T) = b^{-x}O(b^z T)$ , then we obtain a power-law temperature dependence  $O(T) \propto T^{x/z}$ , with universal critical exponent x/z. However, if scaling is valid only for powers of a discrete value  $b_0$ , it follows that  $O(T) = T^{x/z}Q(\ln T)$ , with Q(t)a periodic function of period  $z \ln b_0$ . Fourier expansion of Q(t) yields:

$$O(T) = \sum_{n=-\infty}^{\infty} \alpha_n T^{x/z + i2\pi n/(z \ln b_0)}$$
(1)

with constant coefficients  $\alpha_n$ . Thus, the system is characterized by a family of non-universal complex exponents. An invariant scale  $b_0$ , leading to this *discrete scale invariance*, is found in several critical systems that either are out of equilibrium or have an underlying built-in hierarchical structure (for a review, see [3]).

In this Letter, we show that complex critical exponents and log-periodic behavior appear in a variety of disordered systems close to a percolation QCP, such as Josephson-junction (JJ) arrays, quantum antiferromagnets (QAF) and interacting bosons. Rather than being related to non-equilibrium properties or to the fractality of the percolating cluster, in these systems the invariant scale  $b_0$  emerges naturally in their low-energy excitation spectrum for certain values of their Berry phase  $2\pi\rho$ .

By calculating their specific heat and compressibility at the percolation threshold, we show that, for rational  $\rho$ , large clusters have the lowest excitation energies, giving rise to usual power-law behavior below a crossover temperature  $T^*$ , which varies in a pronounced non-monotonic way with respect to  $\rho$  (see Fig. 1). For irrational  $\rho$ , the low-energy properties are governed instead by degenerate clusters of intermediate sizes, leading to the breakdown of continuous scale invariance ( $T^* \rightarrow 0$ ). Remarkably, the sizes and energies of these resonating clusters depend solely on the continued-fraction expansion of  $\rho$ . As a result, when  $\rho$  is a quadratic irrational, the periodicity of its continued-fraction expansion gives rise to an invariant scale  $b_0$  and, consequently, to complex critical exponents.

To introduce a model for all the systems discussed above [2], consider an array of grains characterized by an XY order parameter  $\Psi_j = |\Psi_0| \exp(i\theta_j)$ , with phase  $\theta_j$  and fixed amplitude  $|\Psi_0|$ . The array is diluted on a regular lattice of dimension d > 1, characterized by



Figure 1: (a) In the diluted quantum system, the global phase (arrow) of clusters of connected grains (dark/red) coherently precesses due to the Berry phase  $2\pi\rho$ . (b) Strong variation of the crossover temperature  $T^*$  below which scaling with real-valued exponents holds (blue points,  $T_0 \sim U$ ).

a quenched random-site variable  $\epsilon_j$  that takes the values 0 and 1 with probabilities P and (1 - P), respectively. We consider the Hamiltonian [2, 4, 5]:

$$H = U \sum_{i} \epsilon_i \left( n_i - \rho \right)^2 - \sum_{ij} \epsilon_i \epsilon_j J_{ij} \cos \left( \theta_i - \theta_j \right), \qquad (2)$$

where  $n_i = -i\frac{\partial}{\partial \theta_i}$ .  $\rho$  can be externally controlled and causes the phase to precess in time according to  $\partial \theta_j / \partial t = 2U\rho$  (see Fig. 1). In JJ-arrays [4, 5],  $\Psi_j$  denotes the superconducting order parameter,  $J_{ij}$  is the Josephson coupling, U is the charging energy and  $\rho$ , related to the AC-Josephson effect, can be changed by an external gate voltage.  $\Psi_j$  can also represent planar quantum rotors, associated with the low-energy modes of QAF [2], where  $\rho$  is proportional to a perpendicular external magnetic field. For systems of interacting bosons[6, 7], which can be realized in optical experiments with cold atoms [8],  $2U\rho$  corresponds to the chemical potential  $\mu$ .

The effects of percolative dilution on all these systems have been the subject of various experimental and numerical investigations [8–12]. Here, we focus on the critical properties at the percolation threshold  $P_c$ , where the density of clusters with s connected occupied sites varies as  $N(s) \propto s^{-\tau}$ , with  $2 < \tau \equiv d/D_f + 1 \leq 2.5$  and  $D_f$  the fractal dimension of the percolating cluster [13]. At low temperatures  $T \ll |J_{ij}|$  and deep in the ordered state of the clean system ( $U < |J_{ij}|$ ), the relative phase between grains inside each cluster is fixed, implying that the entire cluster is characterized by a global phase [14–16]. At  $P_c$ , contributions to the total specific heat of a single cluster arise from the coherent precession of its global phase, C, and from the excitations of internal collective (spin-wave) modes that change the relative phase between grains,  $C_{sw}$ . As we will show below,  $C_{sw}$  is subleading; thus, similar to the behavior in superparamagnets, each size-*s* cluster can be treated effectively as a big single rotor, with the corresponding action:

$$\mathcal{A}_{s} = -\frac{s}{4U} \int_{0}^{\beta} d\bar{\tau} \left( \frac{\partial \theta \left( \bar{\tau} \right)}{\partial \bar{\tau}} - i\mu \right)^{2}, \qquad (3)$$

which describes the coherent phase-precession due to both quantum fluctuations and the Berry phase  $2\pi\rho$ . Notice that, unlike the case of SU(2) spins, the Berry phase of quantum rotors has a topological character, since the imaginary part  $\mathcal{A}_{\text{Berry}} = is\rho \int_0^\beta d\bar{\tau} \frac{\partial\theta}{\partial \bar{\tau}}$  of  $\mathcal{A}_s$  is independent on the time evolution of  $\theta(\bar{\tau})$ , enabling us to solve our problem using sums over winding numbers. Shifting the imaginary time  $\bar{\tau} \to \bar{\tau}/s$  in (3) eliminates the pre-factor s at the expense of a cluster size dependent temperature  $T \to sT$  and, most importantly, Berry phase  $\rho \to s\rho$ . This yields the free energy scaling  $F_s(\rho, T) = s^{-1}F_1(s\rho, sT)$ , from which we can derive scaling relations for the heat capacity  $C_s(T) = -T\partial^2 F_s/\partial T^2$  and the compressibility  $\kappa_s(T) = -\partial^2 F_s/\partial\mu^2$ . Here, the suffix 1 (s) refers to quantities on a single site (single cluster). Thus, macroscopic quantities can be calculated by averaging over all clusters, i.e.  $\mathcal{O}(\rho, T) = \sum_s N(s) \mathcal{O}_s(\rho, T)$ .

Let us first revisit the results for  $\rho = 0$ , where universal power-law behavior was previously found [14]. The low-temperature specific heat of a cluster is given by  $C_s (\rho = 0) \propto \exp(-U/sT)$ , i.e. the typical excitation energy of a cluster decreases *monotonically* with its size,  $\varepsilon_s = U/s$ . Then, the low-energy behavior is dominated by large clusters and we can replace the sum over s by an integral, obtaining, for  $T \ll U$ ,

$$C\left(\rho=0,T\right) \propto T^{d/z_{r}},\tag{4}$$

where the dynamic scaling exponent  $z_r = D_f$  was introduced. This result was also found in detailed computer simulations [17, 18]. Consider now a finite Berry phase  $\rho \neq 0$ . Solving the problem of a single quantum rotor and using the scaling  $T \to sT$ ,  $\rho \to s\rho$  derived from the action (3), we find the spectrum of a single cluster  $E_m = U (m - s\rho)^2 / s$ , with  $m \in \mathbb{Z}$ .



Figure 2: Excitation energy  $\varepsilon_s$  as function of the cluster size s for the irrational  $\rho = \sqrt{7}$ . The highlighted points correspond to energetically degenerate clusters associated to the Diophantine approximant p/q = 37/14, and are responsible for a jump in the integrated density of states. The inset shows the spectrum for the rational  $\rho = 37/7$ , characterized by four well-defined branches.

Therefore, the lowest excitation energy is (see also [6, 7]):

$$\varepsilon_s = \frac{U}{s} \left( 1 - 2 \left| \rho_s \right| \right),\tag{5}$$

where  $\rho_s = s\rho - \lfloor s\rho + \frac{1}{2} \rfloor$  and  $\lfloor x \rfloor$  is the integer part of x, i.e.  $\lfloor x + \frac{1}{2} \rfloor$  is the integer closest to x, such that  $|\rho_s| \leq 1/2$ . Note that  $\rho_s$  depends on the droplet size in a highly non-monotonic way, reflecting the periodicity of the Berry phase (see Fig. 2). Now, not only large clusters yield small excitation energies, but also intermediate-size clusters with  $|\rho_s| \leq 1/2$ .

These low-energy excitations can be described by spinless fermions, yielding the well-known fermionic expressions  $C_1(\omega, T) = (\omega/T)^2 n_F(\omega) n_F(-\omega)$  and  $\kappa_1(\omega, T) = (1/T) n_F(\omega) n_F(-\omega)$  for the single site specific heat and compressibility, with  $n_F(\omega)$  the Fermi function. In Fig. 3 we demonstrate this numerically by comparing C(T) obtained from the exact energy spectrum and from the fermionic expression only. We can also show

this result analytically: Consider, for definiteness,  $0 \le \rho \le 1/2$ . The spectrum of a single rotor, including degeneracies, can be generated from a model of effective interacting fermions and bosons, with occupation numbers  $n_f = f^{\dagger}f$  and  $n_b = b^{\dagger}b$ , respectively

$$H_0 = U \left( n_b + (1 - 2\rho) n_f + \rho \right)^2.$$
(6)

For  $\rho = 0$ , one recovers the N = 2 super-symmetric description of a rotor [19]. Expanding for  $\rho \simeq 1/2$ , we obtain instead  $H_0 \simeq \varepsilon_1 n_f + U n_b + U n_b^2 + 2\varepsilon_1 n_b n_f$ . While the excitation energy of single bosons is U, the fermionic excitation energy is  $\varepsilon_1 = U(1 - 2\rho) \ll U$ . Thus, at sufficiently low temperatures, bosons are diluted and the interaction terms can be neglected, implying that free spinless fermions are the dominant excitations of the system. The limit  $\rho \to 1/2$  also plays an important role in the excitation spectrum of droplets in the Bose-glass phase [6] and in the insulating phase of interacting bosons in a disordered chain [7].

Let us now consider  $\rho = p/q$  to be rational, i.e. p and q are integers with no common divisors. Due to the periodicity of the Berry phase term, the number of distinct values of  $\rho_s$  is of the order of q/2, defining well separated branches in  $\varepsilon_s$ , all decaying as  $s^{-1}$ , with lowest branch  $\varepsilon_s \simeq U(qs)^{-1}$  (see inset of Fig. 2). For  $T \ll U/q^2$ , the problem is virtually the same as for  $\rho = 0$ , leading to a heat capacity dominated by very large clusters as given in Eq.4 with the same exponent  $z_r$ , as shown in Fig. 3. For the compressibility, we obtain  $\kappa(T) \propto T^{d/z_r-1}$ , with a Wilson ratio  $(\kappa T)/C \approx 0.3$  for d = 2. Note, from Fig. 3, that the crossover temperature  $T^*$  changes as  $q^{-2}$  and is insensitive to p. Thus, systems with similar values of  $\rho$  can have very different  $T^*$  (see Fig. 1).

The natural question is: what happens in the regime  $U/q^2 \ll T \ll U$  for very large q? For irrational  $\rho$ ,  $T^* \to 0$  and this regime prevails down to the lowest energies. Indeed, when  $\rho$  is irrational, the sequence  $\rho_s$  is uniformly distributed between -1/2 and 1/2 [20], i.e. there are finite-size droplets with arbitrarily low excitation energy  $\varepsilon_s$ . It is convenient to introduce the averaged integrated density of fermionic states,  $D(\omega) = \sum_s s^{-\tau} \theta (\omega - \varepsilon_s)$ ; from the periodicity of  $\varepsilon_s$  with respect to  $\rho$  (i.e. summing over winding numbers), we obtain, for  $\omega \ll U$ :

$$D(\omega) = \zeta (\tau - 1) \frac{\omega}{U} + \sum_{s,\lambda=\pm} \frac{f_{\text{saw}}(sx_{\lambda})}{s^{\tau}},$$
(7)

where  $x_{\pm} = \omega/U \pm 2\rho$ ,  $\zeta(x)$  is the zeta function and  $f_{\text{saw}}(x)$  is the sawtooth function, which has period 2 and unit jumps at every odd integer:  $f_{\text{saw}}(x) = (-x + 2n)/2$  for 2n - 1 < x < 1



Figure 3: Specific heat C as function of temperature T for the rational  $\rho = 55/89$ . The dashed blue line is the exact result and the solid red line is the fermionic approximation. The onset of power-law behavior is marked by  $T^*$ (dotted line). The inset shows the log-log variation of  $T^*$  with respect to the denominator q for a series of rationals with comparable values,  $\rho = \left\{\frac{3}{5}, \frac{8}{13}, \frac{21}{34}, \frac{55}{89}, \frac{144}{233}, \frac{377}{610}, \frac{987}{1597}\right\}$ .

2n+1. These jumps give rise to discontinuities in  $D(\omega)$  at frequencies:

$$\omega_j = 2U \left| \rho - \frac{p_j}{q_j} \right|,\tag{8}$$

where  $p_j$  is an odd integer and  $q_j$  is even. At  $\omega \ll U$ , the fractions  $p_j/q_j$  that satisfy Eq. (8) are the ones that best approximate  $\rho$ , i.e. the Diophantine approximants, which are given by the convergents of the continued fraction expansion of  $\rho$  [21]. Physically, the jumps are a consequence of the existence of a set of energetically degenerate (i.e. "resonating") clusters with sizes that are odd multiples of  $q_j/2$ ,  $s = (n + 1/2) q_j$  (see Fig. 2). Summing over all these clusters in Eq. (7), we find that each jump in  $D(\omega)$  is given by  $\Delta_j = q_j^{-\tau} \zeta(\tau) (2^{\tau} - 1)$ .

Back to Eq. 7, we find that the regular part of the sawtooth function cancels out the linear in  $\omega$  term. Thus, the frequency dependence of  $D(\omega)$  is governed by the successive jumps  $\Delta_j$  at  $\omega_j$  of Eq. (8) and, consequently, by the sequence of convergents of the continued fraction expansion of  $\rho$  with even denominator  $q_j$ . Although the determination of this sequence for an arbitrary irrational  $\rho$  is an outstanding problem in number theory, it is simplified in the case of quadratic irrationals, which have periodic continued fraction expansions [21]. Then, one finds that the sequence of even  $q_j$  is also periodic.

In fact, for quadratic irrationals with a single period  $a \in \mathbb{Z}$ , which are solutions of the algebraic equation  $y^2 - ay - 1 = 0$ , we find that if  $q_j$  is even, so is  $q_{j+N}$ , with  $N = 2 + \mod(a, 2)$ . Consequently, the distance between consecutive jumps is a constant in log-scale,  $\ln(\omega_j/\omega_{j+1}) = 2N \ln y_+$ , as well as the ratio between their amplitudes,  $\ln(\Delta_j/\Delta_{j+1}) = \tau N \ln y_+$ , where  $y_+$  is the positive solution of the algebraic equation. Using these properties, we can show that  $D(\omega)$  is a fractal function with fractal dimension  $d_{\omega} = \tau/2$ , characterized by a power-law decay in  $\omega$  and periodic oscillations in  $\ln \omega$ . Since  $C(T) = \int d\omega \nu(\omega) C_1(\omega, T)$ , where  $\nu = dD/d\omega$  is the density of states, we obtain:

$$C(T) = T^{d/z_{ir}} A(\ln T), \qquad (9)$$

where  $z_{ir} = 2D_f d/(D_f + d)$ , i.e.  $z_{ir} > z_r$ , and A(t) is a periodic function of period  $z_{ir} \ln b_0 \equiv 2N \ln y_+$ . For the compressibility, we find  $\kappa(T) = T^{(d/z_{ir})-1}B(\ln T)$ , where B(t) has the same period as A(t). Thus, the system has complex critical exponents as in Eq. (1). In Fig. 4, we show numerical results for  $\rho = \sqrt{2}$ ; we also verified numerically that the scaling form in Eq. 9 holds for quadratic irrationals  $\rho$  with more complicated continued-fraction periods. For non-quadratic irrationals, our numerical calculations indicate that Eq. 9 still describes the critical behavior, but now A(t) oscillates irregularly without a well-defined period.

The breakdown of continuous scale invariance for irrational  $\rho$  can be attributed to the resonating clusters with arbitrarily low excitation energies, as they cause jumps in the entire spectrum, prohibiting to replace  $\sum_s \rightarrow \int ds$  in Eq. 7. For rational  $\rho$ , such a replacement is allowed, leading to full scaling  $s \rightarrow s/b^{D_f}$  and to Eq. 4. Yet, when  $\rho$  is a quadratic irrational, the dynamically broken scale invariance is partially restored as discrete scale invariance. In this case, the periodic structure of the continued-fraction expansion of  $\rho$  gives rise to log-periodic relations between sizes  $s = (n + 1/2) q_j$  and energies  $\omega_j = 2U |\rho - p_j/q_j|$  of different sets of resonating clusters, establishing an invariant scale  $b_0$  and complex critical exponents  $(d/z_{irr}) + in\pi/(N \ln y_+)$  for C(T).

Going back to the contribution of the spin-waves, their density of states is  $\nu_{sw} \propto k^{d_s-1}$  at



Figure 4: (a) Frequency dependent integrated density of states  $D(\omega)$ , as well as the temperature dependent (b) specific heat C(T) and (c) compressibility  $\kappa(T)$  for the system with  $\rho = \sqrt{2}$ . Dashed lines show the underlying power-law behavior superimposed to the log-periodic oscillations. Inset is a zoom of  $D(\omega)$ .

 $P_c$ , where the fracton dimension  $d_s$  characterizes the spectrum of the eigenvalues  $k^2$  of the Laplacian on the percolating cluster [13, 16]. From the spin-waves dispersion  $\Omega_{s,k}^2 = \varepsilon_s^2 + c^2 k^2$  and the scaling properties of the fermionic density of states, we find  $\mathcal{O}_{sw} \propto \mathcal{O}T^{\phi}$  for both  $\mathcal{O} = C, \kappa$ , with  $\phi = d_s - 1$  ( $\phi = d_s - 1/2$ ) for rational (irrational)  $\rho$ . As  $d_s > 1$  [13], it follows that  $\phi > 0$ . Since the internal modes are sub-leading compared to the coherent modes, the spectrum of a single cluster depends solely on its size and not on its shape, in accordance to Eq. 3.

In summary, we solved the XY quantum-rotor problem at low T and close to the percolation threshold, which describes diluted systems as diverse as JJ-arrays with d.c.-bias voltage, canted QAF in a perpendicular magnetic field, and interacting bosons coupled to a particle reservoir. Their topological Berry phase  $2\pi\rho$  dramatically alters the percolation QCP, since the low-T behavior is governed by emergent spinless fermions with fractal spectrum, giving rise to generally irregular log T-oscillations of thermodynamic variables. While for irrational  $\rho$  they persist to  $T \rightarrow 0$ , for rational  $\rho = p/q$  they occur in the temperature range  $q^{-2} \leq T/U \leq 1$ , which can be broad for  $q \gg 1$ . Remarkably, for a quadratic irrational  $\rho$ , they become regular, leading to complex critical exponents. Our results demonstrate that the quantum criticality in disordered systems governed by a topological Berry phase is beyond the GLW paradigm of critical systems.

We thank M. Axenovich for pointing out Ref.[20] to us. This research was supported by the U.S. DOE, Office of BES, Materials Sciences and Engineering Division.

- [1] S.-K. Ma, Modern Theory of Critical Phenomena, Benjamin, Reading (1976).
- [2] S. Sachdev, *Quantum Phase Transitions*, Cambridge Univ. Press (1999).
- [3] D. Sornette, Phys. Rep. **297**, 239 (1998).
- [4] S. Doniach, Phys. Rev. B 24, 5063 (1981).
- [5] M. P. A. Fisher *et al.*, Phys. Rev. B **40**, 546 (1989).
- [6] P. B. Weichman and R. Mukhopadhyay, Phys. Rev. B 77, 214516 (2008).
- [7] E. Altman, Y. Kafri, A. Polkovnikov, and G. Refael, Phys. Rev. Lett. 100, 170402 (2008).
- [8] S. Ospelkaus *et al.*, Phys. Rev. Lett. **96**, 180403 (2006).
- [9] Y. J. Yun et al., Phys. Rev. Lett. 97, 215701 (2006).

- [10] J. P. Lv et al., Phys. Rev. B 79, 104512 (2009).
- [11] O. P. Vajk *et al.*, Science **295**, 1691 (2002).
- [12] L. Wang and A. W. Sandvik, Phys. Rev. Lett. 97, 117204 (2006); Phys. Rev. B 81, 054417 (2010).
- [13] D. Stauffer and A. Aharony, Introduction to Percolation Theory, Taylor & Francis, London, (1994).
- [14] T. Vojta and J. Schmalian, Phys. Rev. Lett. 95, 237206 (2005).
- [15] J. A. Hoyos *et al.*, Phys. Rev. Lett. **99**, 230601 (2007); T. Vojta *et al.*, Phys. Rev. B **79**, 024401 (2009).
- [16] N. Bray-Ali, J. E. Moore, T. Senthil, and A. Vishwanath, Phys. Rev. B 73, 064417 (2006).
- [17] A.W. Sandvik, Phys. Rev. Lett. 89, 177201 (2002).
- [18] R. Yu, T. Roscilde, and S. Haas, Phys. Rev. Lett. 94, 197204 (2005).
- [19] F. Correa and M. S. Plyushchay, Ann. Phys. 322, 2493 (2007).
- [20] H. Weyl, Mathematische Annalen 77, 313 (1916).
- [21] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Clarendon Press, Oxford (1960).