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We describe a new regime of magnetotransport in two dimensional electron systems in the presence
of a narrow potential barrier. In such systems, the Landau level states, which are confined to
the barrier region in strong magnetic fields, undergo a deconfinement transition as the field is
lowered. Transport measurements on a top-gated graphene device are presented. Shubnikov-de
Haas (SdH) oscillations, observed in the unipolar regime, are found to abruptly disappear when the
strength of the magnetic field is reduced below a certain critical value. This behavior is explained
by a semiclassical analysis of the transformation of closed cyclotron orbits into open, deconfined
trajectories. Comparison to SdH-type resonances in the local density of states is presented.

Electron cyclotron motion constrained by crystal
boundaries displays interesting phenomena, such as skip-
ping orbits and electron focusing, which yield a wealth
of information on scattering mechanisms in solids [1, 2].
Since the 1980s, semiconducting two-dimensional elec-
tron systems (2DES) have become a vehicle for invest-
gating the interplay between gate-induced potential and
cyclotron motion. A variety of interesting phenomena
were explored in these systems, including quenching of
the quantum Hall effect [3, 4], Weiss oscillations due to
commensurability between cyclotron orbits and a peri-
odic grating [5], pinball-like dynamics in 2D arrays of
scatterers [6], and coherent electron focusing [7].

The experimental realization of graphene [8], a new
high-mobility electron system, affords new opportunities
to explore effects that were previously inaccessible. Here
we focus on one such phenomenon, the transformation
of the discrete Landau level spectrum to a continuum
of extended states in the presence of a static electric
field. Previous attempts to induce sharp potential bar-
riers in III-V semiconductor structures have been lim-
ited by the depth at which the 2DES is buried—typically
about 100 nm below the surface[9]. In contrast, electronic
states in graphene, a truly two-dimensional material, are
fully exposed and thus allow for potential modulation on
∼ 10 nm length scales using small local gates and thin
dielectric layers[10–13].

To probe the phenomena of interest, barrier widths
must be comparable to the magnetic length ℓB =
(~c/eB)1/2 for the fields in which magnetic oscillations
can be observed. This condition gives characteristic fields
as low as 30 mT for systems such as GaAs. Magnetic os-
cillations are nearly washed out at such fields, making
the effects described below hard to probe in GaAs struc-
tures. In contrast, the gate widths available in graphene
translate to much higher fields of a few Tesla, making
graphene the system of choice for this experiment.

The behavior which will be of interest for us is illus-
trated by a toy model involving the Landau levels of a
massive charged particle in the presence of an inverted
parabolic potential U(x) = −ax2. Competition between

the repulsive potential and magnetic confinement gives
rise to a modified harmonic oscillator spectrum

εn(py) =
~e

m

√

B2 −B2
c (n+ 1/2)−

2ap2
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e2(B2 −B2
c )

(1)

for B > Bc, where m is the particle mass, py is the y
component of momentum, and Bc =

√
2ma/e is the crit-

ical magnetic field strength. For strong magnetic field,
B > Bc, the spectrum consists of discrete (but disper-
sive) energy bands indexed by an integer n, whereas for
B ≤ Bc the spectrum is continuous even for fixed py.
This behavior can be understood quasiclassically in terms
of transformation of closed cyclotron orbits into open or-
bits, which occurs when the Lorentz force is overwhelmed
by the repulsive barrier potential.

Landau levels of massless Dirac charge carriers in
single-layer graphene, subject to a linear potential
U(x) = −eEx, exhibit an analogous collapse of the dis-
crete spectrum [15]:

εn(py) = ±vF

√
2n~eB

(

1 − β2
)3/4 − βvF py, (2)

where n = 0, 1, 2... and β = E/vFB. The transition
at Bc = E/vF can be linked to the classical dynamics
of a massless particle, characterized by closed orbits at
B > Bc and open trajectories at B < Bc [16].

A simple picture of the spectrum (2) can be obtained
from the Bohr-Sommerfeld (BS) quantization condition

∫ x2

x1

px(x)dx = π~(n+ γ), (3)

where x1 and x2 are the turning points, γ = 0 due to the
Berry phase contribution for Dirac fermions, and

px(x) =
√

(ε− U(x))2/v2
F − (py − eBx)2. (4)

For linear U(x), this gives the Landau level spectrum (2)
for B > Bc. As B approaches Bc, one of the turning
points moves to infinity, indicating a transformation of
closed orbits into open trajectories.
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FIG. 1: (a) Differentiated conductance, dG/dVtg, of a narrow
top gate graphene device, pictured in (c). Fabry-Perot (FP)
oscillations appear in the presence of confining pn junctions.
(b) dG/dVtg as a function of B and Vtg. Shubnikov-de Haas
(SdH) oscillations are observed at high B. The fan-like SdH
pattern is altered by the barrier: in the pp′p region it curves,
weakens, and is washed out at fields |B| . Bc, Eq.(7), while
in the pnp region a crossover to FP oscillations occurs. Data
shown correspond to Vbg = −70V [dashed line in (a)]. (c)
Top gated graphene device micrograph and schematic; top
gate width is ∼ 16nm. (d) Local density of states (DOS) in
the middle of parabolic barrier. The energy derivative dN/dε
[see Eq.(10)], which corresponds to the measured quantity
dG/dVtg, is shown. Dashed parabola marks the critical field,
Eq.(8). Oscillations in the DOS modulate the rate of scatter-
ing by disorder, resulting in the SdH effect [18].

To realize the collapse of Landau levels in an electron
system, several conditions must be met. First, it must be
possible to create a potential barrier that is steep on the
scale of the cyclotron orbit radius. Second, the system
must be ballistic on this length scale, in order to sup-
press the broadening of Landau levels due to disorder.
Graphene, which is a truly two-dimensional material with
high electron mobility, fulfills both conditions. Crucially,
as demonstrated by the recent observation of Fabry-Perot
(FP) oscillations in gated graphene structures [13], trans-
port can remain ballistic even in the presence of a gate-
induced barrier. Thus graphene is an ideal system for
studying the Landau level collapse.

Transport data taken from a locally gated device
similar to that described in Ref.[13] are shown in
Fig.1. Graphene was prepared via mechanical exfoli-
ation and contacted using electron beam lithography
before being coated with a 7/10 nm thick hydrogen
silsesquioxane/HfO2 dielectric layer. Narrow (∼16 nm)
palladium top gates were then deposited, and the elec-
trical resistance measured at 1.6 Kelvin. Finite element
modeling[13] yields density profile

eρ(x) ≈ CtgVtg

1 + x2/w2
+ CbgVbg, (5)

FIG. 2: (a) Traces of the conductance data from Fig.1b
for several magnetic field values. Landau level numbers are
shown next to the corresponding peaks. The SdH oscillations
abruptly disappear in the unipolar (pp′p) region as the mag-
netic field is lowered to B ≈ 3 T, and yet persist to much
lower fields in the pnp region. (b) Traces of the calculated
local DOS (see Fig.1d) showing similar behavior. The traces
are artificially offset from each other for visual clarity. In both
plots, as the magnetic field is lowered, higher number Landau
Levels collapse first, indicating a dependence of the critical
field Bc on energy/gate voltage.

with w ≈ 45 nm, where Ctg(bg) and Vtg(bg) are the top
(bottom) gate capacitance and applied voltage. To sub-
tract the series resistances of the graphene leads, the nu-
merical derivative of the conductance with respect to the
top gate voltage, dG/dVtg, was analyzed.

At zero magnetic field (Fig.1a), dG/dVtg shows distinct
behavior in four regions in the (Vbg, Vtg) plane, corre-
sponding to pp′p, pnp, npn, and nn′n doping, where n
(p) refers to negative (positive) charge density and prime
indicates different density. The appearance of FP inter-
ference fringes when the polarity of charge carriers in the
locally gated region and graphene leads have opposite
signs indicates that the mean free path is comparable to
the barrier width, lmf ∼ w.

In high magnetic field, a fan of SdH resonances cor-
responding to Landau levels is seen in both the bipolar
and unipolar regimes (see Fig.1b). At lower fields, the ob-
served behavior depends on the polarity under the gate.
In the bipolar regime, as B is lowered, the SdH reso-
nances smoothly evolve into FP resonances. The half-
period shift, clearly visible in the data at B ≈ 1 T, is a
hallmark of Klein scattering [14]. In the unipolar regime,
the SdH resonances bend, becoming more horizontal at
lower field. The oscillations first begin to lose contrast,
and then completely disappear below Bc ≈ 4 T (Fig.2).

The connection between this behavior and Landau
level collapse is exhibited most clearly by a semiclassical
analysis. The SdH resonances arise from an oscillatory
contribution to the density of states at the Fermi level due
to closed trajectories; the BS condition (3) with ε = εF

and py = 0 gives a good estimate for the positions of those
resonances. For a generic barrier potential, Eq.(3) can
be written directly in terms of experimental control pa-
rameters. Using the Thomas-Fermi approximation, and
ignoring the effects of ‘quantum capacitance’ and non-
linear screening [17], we define the position-dependent
Fermi momentum kF (x) =

√

4πρ(x)/g, where g = 4
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is the spin/valley degeneracy. Substituting the relation
ε− U(x) = ~vFkF (x) into Eq.(4), we obtain

∫ x2

x1

√

4π

g
~2ρ(x) − (py − eBx)2dx = π~(n+ γ). (6)

Interestingly, and somewhat unexpectedly, the quanti-
zation condition assumes the same form for massless
and massive carriers with g = 4 (monolayer and bilayer
graphene); it would thus be trivially modified for GaAs
quantum wells (g = 2 and γ = 1/2).

A rough estimate for the critical field can be obtained
by comparing the curvature of ρ(x) at x = 0 with the
B2x2 term in Eq.(6). Near the polarity reversal boundary
CbgVbg +CtgVtg = 0 (white dashed line in Fig.1a), using
the device parameters Cbg = 115 aF/µm2, Vbg = −70 V,

w = 50 nm, we findBc = (~/ew) (πCbgVbg/e)
1/2 ≈ 5.2 T.

The dependence of Bc on experimental control param-
eters Vtg and Vbg can be obtained by analyzing the turn-
ing points for the density profile (5). Setting py = 0 gives
~kF (x) = ±eBx. Solving this equation and equating the
result to barrier half-width, x1(2) = ±w, we obtain

Bc = (~/ew)
√

(2π/eg)(2CbgVbg + CtgVtg). (7)

Both the value of Bc and its dependence on gate voltages
matches the data quite well (red line in Fig.1b).

The actual density profile is nonparabolic, flattening
outside the top gate region (TGR) on a length scale
2w ≈ 100 nm. Yet, since the magnetic length ℓB is much
shorter than 2w for the fields of interest (B & 1 T), this
flattening does not significantly impact our discussion of
the collapse phenomenon. While the states realized at
subcritical magnetic fields are not truly deconfined due
to cyclotron motion in the region outside the TGR, the
corresponding orbits are very long. For such states, the
particle traverses the TGR, makes a partial cyclotron
orbit outside of the TGR, and finally crosses the TGR
again to close the orbit (Fig.3a). The net orbit length
is a few w, which is much greater than the orbit size at
strong fields (a few ℓB). The contribution of long orbits
to SdH oscillations will be suppressed due to spatial inho-
mogeneity and disorder scattering; hence the distinction
between confined and deconfined orbits remains sharp
despite the flattening of the potential (also, see a more
detailed discussion in Online Supplement [19]).

With that in mind, below we analyze a simple model,
U(x) = −ax2. A simple estimate of the collapse thresh-
old can be obtained by considering balance between the
Lorentz force and the force due to the electric field,
vFB = −dU/dx. This condition is satisfied for a par-
ticle moving parallel to the barrier with x = ±ℓ, ℓ =
evFB/(2a). This gives an energy-dependent critical field,

Bc(ε) = (2/evF )
√
−aε, (8)

which increases with detuning from neutrality, as in ex-
periment.

We treat the problem using microscopic Hamiltonian

H =

(

U(x) vF p−
vF p+ U(x)

)

, p± = −i~ d

dx
± i(py − eBx),

(9)
where py is the conserved canonical momentum compo-
nent parallel to the barrier. We nondimensionalize the
problem using “natural units”

ε∗ = (~2v2
Fa)

1/3, x∗ =

(

vF ~

a

)1/3

, B∗ =
~

e

(

a

vF ~

)2/3

.

For each value of py and magnetic field B, we represent
the Hamiltonian as an M×M matrix defined on a grid in
position space, with periodic boundary conditions. We
use the eigenvalues and eigenstates obtained from diag-
onalization to evaluate the local density of states (DOS)
in the middle of the barrier,

N(ε) =

∫

dpy

2π

M
∑

n=1

Γ

π

〈|ψn,py
(x = 0)|2〉

(ε− εn)2 + Γ2
, (10)

with Landau level broadening incorporated through the
Lorentzian width Γ = 0.2ε∗. In our simulation, a system
of size L = 15x∗ discretized with M = 1500 points was
used. Averaging with a gaussian weight was used to sup-
press the effect of spurious states arising due to a vector
potential jump at the boundary,

〈|ψn,py
(x = 0)|2〉 =

∫

dx′e−x′2/2σ2 |ψn,py
(x′)|2, (11)

with σ ≈ x∗. Oscillations in the density of states (10)
modulate the rate of electron scattering by disorder, and
thus show up in transport quantities measured as a func-
tion of experimental control parameters, as in the canon-
ical SdH effect [18].

The resulting local DOS exhibits oscillations which
track Landau levels at high B (Fig.1d). In the pp′p case,
at lower B, discrete Landau levels give way to a contin-
uous spectrum in the region inside a parabola (dashed
line) which marks the collapse threshold, Eq.(8).

The DOS exhibits FP fringes in the pnp region at
low B, however without the the half-period shift seen
in dG/dVtg at B . 1T (Fig.1). As discussed in Ref.[14],
this half-period shift results from FP interference due to
Klein scattering at pn interfaces. A proper model of this
effect must account for ballistic transport in the system.

The collapse observed in the density of states is related
to deconfinement of classical orbits. The orbits can be
analyzed as constant energy trajectories of the problem

ε = vF

√

p2
x + p̃2

y + U(x), p̃y = py − eBx. (12)

For parabolic U(x) = −ax2 the orbits with py = 0 can
be easily found in polar coordinates px + ipy = |p|eiθ:

|p|
p0

=
1

sin2 θ

(

1 ±
√

1 − ε

εc
sin2 θ

)

, εc =
(vF eB)2

4a
(13)
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FIG. 3: (a) Closed orbits for the Thomas-Fermi potential ob-
tained from the density profile, Eq.(5), with B = 9, 7, 5, 3, 1T
and py = 0. Long trajectories, extending far outside the gated
region, do not contribute to SdH oscillations (see text). (b,c)
Trajectories for the potential U(x) = −ax2 and py = 0. Three
types of trajectories are shown in momentum space (b) and
position space (c): subcritical (red), critical (black), and su-
percritical (blue). The saddle points in momentum space cor-
respond to motion along straight lines x = ±ℓ, where the
Lorentz force is balanced by the electric field.

with p0 = vF e
2B2/2a (see Fig.3b). Only real, positive

solutions should be retained; when ε/εc > 1, the discrim-
inant in Eq.(13) is negative near θ ≈ π/2 and trajectories
cannot close (blue curves in Fig.3b).

The related orbits in position space can be found from
the relation dy/dx = ẏ/ẋ = p̃y/px, giving

dy

dx
=

±vF (py − eBx)
√

(ε− U(x))2 − v2
F (py − eBx)2

. (14)

For py = 0, integration is performed using the variable
u = x2/ℓ2,

y

ℓ
= ±

∫

du
√

(u+ ε/εc − 2)2 + 4(ε/εc − 1)
, (15)

where ℓ = vF eB/2a such that εc = aℓ2. The integrand
changes its behavior at the critical energy εc. For ε > εc,
the integrand is real valued for all u and

sinh

(

y(x) − y0
ℓ

)

=
x2/ℓ2 + ε/εc − 2

2
√

ε/εc − 1
. (16)

For ε < εc, real solutions are divided into two domains
0 ≤ u ≤ 2 − ε/εc − 2

√

1 − ε/εc (closed orbits) and u >

2 − ε/εc + 2
√

1 − ε/εc (open orbits):

cosh

(

y(x) − y0
ℓ

)

= ±2 − ε/εc − x2/ℓ2

2
√

1 − ε/εc

. (17)

The red curves in Fig.3c correspond to the low energy
regime, ε < εc, where orbits can either be closed (Landau
levels) or open (trajectories for particle moving far from
the barrier). At higher energies, ε > εc, all trajectories
are open. The straight black lines correspond to the crit-
ical orbits of Eq.(8), where the Lorentz force and electric
field are balanced. In addition to the two particular crit-
ical trajectories shown, in the limit ε/εc → 1 there is an

entire family of critical trajectories which asymptotically
approach these lines.

Interestingly, unlike in the case of the potential ob-
tained from the Thomas-Fermi model, where the clas-
sical turning points move continuously to infinity as the
transition is approached, trajectories in the parabolic po-
tential are trapped between the critical separatrix lines.
At very low energies, closed orbits are approximately cir-
cular; as the energy increases towards εc, orbits become
more and more elongated, until finally merging with the
separatrix at ε = εc (see Fig.3).

In summary, graphene devices with a barrier induced
by a narrow top gate can be used to probe electronic
states on the spatial scale of a few tens of nanometers.
In our transport measurements, the SdH-type resonances
arising from quantized states associated with closed or-
bits are used to directly observe the competition between
magnetic confinement and deconfinement due to elec-
tric field. As a result of this competition, the discrete
spectrum of Landau levels collapses when subjected to a
strong external potential. Experimental observations are
found to be in good agreement with theory.
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