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We study the superfluid character of a dipolar Bose-Einstein condensate (DBEC) in a quasi-two
dimensional (q2D) geometry. We consider the dipole polarization to have some non-zero projection
into the plane of the condensate so that the effective interaction is anisotropic in this plane, yielding
an anisotropic dispersion relation. By performing direct numerical simulations of a probe moving
through the DBEC, we observe the sudden onset of drag or creation of vortex-antivortex pairs at
critical velocities that depend strongly on the direction of the probe’s motion. This anisotropy
emerges because of the anisotropic manifestation of a roton-like mode in the system.

A quintessential feature of a superfluid is its ability to
support dissipationless flow. For example, a small probe
can move through the a superfluid without experiencing a
drag force, provided that it moves below a certain critical
velocity. As Landau famously explained, when this crit-
ical velocity is exceeded, energy can be dissipated into
collective excitations of the fluid, leading to a nonzero
drag force on the probe [1]. In a dilute superfluid such as
a Bose-Einstein condensate (BEC) of alkali atoms, these
excitations are simply sound waves and the critical ve-
locity is equal to the sound velocity. By contrast, for
a strongly interacting superfluid such as liquid 4He, the
relevant excitations correspond to nontrivial many-body
excitations, dubbed rotons, which appear as a peak in
the static structure function of the fluid at some finite,
nonzero momentum. These modes lead to a superfluid
critical velocity that is significantly less than the speed
of sound. Moreover, they represent a vital link between
a macroscopic observable such as superfluidity, and the
detailed, microscopic physics of the fluid. This critical
velocity has been verified experimentally via measure-
ments of ion-drift velocity in the superfliud phase of 4He
[2], thereby providing insight into the detailed structure
of the system.

Currently, a major research thrust is working to pro-
duce BECs composed of particles with dipolar interac-
tions, using either strongly magnetic atoms [3] or dipolar
molecules [4]. This fascinating new breed of superfluids
can also exhibit roton-like features in their spectra, de-
spite existing in a dilute gaseous state [5]. By tuning ei-
ther the dipole moment or the density of the constituents,
the spectra of these gases can be widely varied [6]. The
relation between superfluidity and elementary excitations
can therefore be probed in these gases as never before.
Moreover, these dipolar BECs (DBECs) bring something
entirely new to the subject, namely an interparticle in-
teraction that is intrinsically anisotropic. It is therefore
now possible to contemplate a superfluid whose critical
velocity depends on the direction of flow. It is this basic
property of anisotropic superfluidity that we explore in
this Letter.

We consider a DBEC in a quasi-two-dimensional
(q2D), or pancake-shaped trapping potential and allow
the dipoles to be polarized at an arbitrary angle with

respect to this plane. Numerical simulations of a probe
moving through the DBEC reveal a sudden onset of drag
at a critical velocity that is quite different for different
directions of the probe’s motion. Specifically, the critical
velocity is larger in the direction parallel to the dipoles’
orientation than in the perpendicular direction. In spite
of this anisotropy, the speed of sound, corresponding to
long-wavelength excitations, remains isotropic. For suffi-
ciently small probes, the drag is due to the excitation of
the roton-like modes, whereas for larger probes if arises
from the production of vortex-antivortex pairs, as has
been observed in experimental studies of isotropic alkali-
atom BECs [7, 8]. Even in this case, however, the spin-
ning off of vortices depends strongly on the direction of
motion of the probe, so that the effects of anisotropy
should be readily observable.

We work in a quasi-2D (q2D) geometry by assuming
that there is a strong one-dimensional (1D) harmonic
trap in the z-direction, U1D(z) = 1

2
mω2

zz
2, where m

is the bosonic mass and ωz is the trapping frequency.
This allows the condensate wavefunction to be written
in the separable form Ψ(r, t) = χ(z)ψ(ρ, t) where χ(z) is
the ground state harmonic oscillator wavefunction. By
inserting this ansatz into the Gross-Pitaevskii equation
(GPE), describing the dilute, zero-temperature DBEC,
and integrating out the z-dependence, we derive the mod-
ified, time-dependent GPE for the q2D system,

i~∂tψ =

{

− ~
2

2m
∇2 + Vp + g|ψ|2 + gdΦ

}

ψ, (1)

where ψ = ψ(ρ, t) is the in-plane condensate wave-
function, Vp = Vp(ρ, t) is a time-dependent probe po-

tential, g = 2
√

2π~
2as/mlz is the mean-field coupling

for contact interactions, as is the scattering length,
lz =

√

~/mωz is the axial harmonic oscillator length,

gd = d2/
√

2πlz is the ddi coupling and gdΦ = gdΦ(ρ, t) is
the mean-field potential due to the ddi, where Φ (ρ, t) =
4π
3
F−1[ñ(k, t)F (klz√

2
)], and F is the 2D Fourier transform

operator and ñ(k, t) = F [n(ρ, t)].

The function 4π
3
gdF (q), where q ≡ klz/

√
2, is the k-

space ddi for the q2D geometry. It has two contribu-
tions coming from polarization perpendicular or parallel
to the direction of the dipole tilt, F (q) = cos2(α)F⊥(q)+
sin2(α)F‖(q) where α is the angle between ẑ and the
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polarization vector d̂. These contributions are F‖(q) =

−1 + 3
√
π(q2d/q)e

q2

erfc(q), where qd is the wave vector

along the direction of the projection of d̂ onto the x-
y plane, erfc is the complementary error function and

F⊥(q) = 2 − 3
√
πqeq2

erfc(q).
To simplify this problem, we rescale energies in units

of the chemical potential, given by µ∗ = gn0{1 +
β 4π

3
(3 cos(α)2−1)} for the unperturbed system [9]. Here,

β = gd/g. This leads to characteristic units of length
given by the coherence length ξ∗ = ~/

√
mµ∗; time

τ∗ = ~/µ∗; and velocity c∗ =
√

µ∗/m. Additionally,
we rescale the wavefunction ψ → ψ/

√
n0 where n0 is the

integrated 2D density of the unperturbed system. The
rescaled coupling constants are then g∗ = gn0/µ

∗ and
g∗d = gdn0/µ

∗ = βg∗. This formalism describes the q2D
DBEC, including the ground (condensed) state and the
dispersion relation that describes the system’s quasipar-
ticle spectrum.

The dispersion relation of a homogeneous q2D DBEC
is given in Bogoliubov theory by [10]

ω(k) =

√

k4

4
+ k2g∗

(

1 +
4π

3
βF

(

klz√
2

))

. (2)

For α = 0 (polarization along the trap axis) this disper-
sion does not depend on the direction of the quasipar-
ticle propagation. However, for α 6= 0, or for nonzero

projection of d̂ onto the x-y plane, the direction of k be-
comes important in describing the quasiparticles of the
system. Landau famously used the dispersion relation of
a Bose fluid to determine its superfluid critical velocity,
defining the Landau critical velocity, vL = min [ω(k)/k]
[1]. As vL is given in terms of the dispersion relation
ω(k), it then also depends on the direction of k, and thus
is an anisotropic quantity when | cos (α)| < 1. Other
anisotropic dispersions have been predicted for a 1D
lattice system of q2D DBECs [11], periodically dressed
BECs [12] and for dipolar gases in a 2D lattice [13]. Ad-
ditionally in this vein, anisotropic solitons have been pre-
dicted for dipolar gases [14].

To illustrate this point, we use the parameters g∗ =
0.25, g∗d = 0.36, lz/ξ

∗ = 0.5 and α = π/4 (µ∗ = 1),
which are chosen to best illustrate anisotropic effects
while keeping safely away from the unstable regime; we
will identify them with experimental parameters below.
Figure 1(a) shows the dispersion calculated using these
parameters for quasiparticle propagation parallel to (‖)
and perpendicular to (⊥) the tilt of the dipoles into the
plane. For parallel propagation, the dispersion resembles
that of a system with contact interactions; the curve goes
smoothly from the linear phonon regime at small k to the
free-particle regime at large k. For this case, vL/c

∗ = 1.0
(dashed red line), meaning that the critical velocity is
identical to the speed of sound. In contrast, the perpen-
dicular dispersion curve exhibits a roton-like feature at
intermediate k, setting vL/c

∗ = 0.50 (dashed blue line).
The inset in figure 1(a) shows vL as a function of the az-
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FIG. 1: (color online) (a) The Bogoliubov dispersions for g∗ =
0.25, g∗

d = 0.36, lz/ξ∗ = 0.5 and α = π/4 for propagation
perpendicular (⊥) to and parallel (‖) to the tilt of the dipoles,
shown by the blue and red lines, respectively. The dashed
lines have slopes that are the Landau critical velocities (vL) of
the dispersions, while the inset shows vL as a smooth function
of the angle η between the ‖ (η/π = 0) and ⊥ (η/π = 1/2)
propagation directions. (b) A contour plot of the density for a
stationary obstacle with amplitude Ap/µ∗ = 1.0. The shaded
region indicates a density exceeding 1.05n0 , and the arrow
indicates the direction of polarization. (c) Density slices of
(b) along the parallel (dashed red) and perpendicular (blue)
directions. The density oscillation due to the roton is clear in
the perpendicular case.

imuthal angle, η, the angle between kd and k. Interest-
ingly, the speed of sound, given by cs = limk→0[ω(k)/k],
is the same for both parallel and perpendicular propaga-
tion, cs/c

∗ = 1, and is in fact isotropic. Therefore, the
anisotropy in the spectrum occurs only at finite k due to
the presence of an anisotropic roton.

The impact of the anisotropic roton can be directly
seen in the density of the gas. In Figure 1(b) we
show a contour plot of the density in the presence of
a repulsive Gaussian potential, or “probe,” of the form
Vp(x, y) = Ap exp (−(x2 + y2)/σ2

p) with Ap/µ
∗ = 1.0 and

σp/ξ
∗ = 2.0, as may be realized by shining a blue-detuned

laser on the system from the z-direction. The shaded re-
gions indicate density above 1.05n0, and the arrow indi-
cates the direction of polarization. In Figure 1(c) we plot
density slices of this distribution to more clearly show the
density profile in the parallel (dashed red) and perpen-
dicular (solid blue) directions. Interestingly, the high-
density regions occur in the direction perpendicular to
the tilt of the dipoles, the same direction that exhibits a
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roton feature in the dispersion. Indeed, it was shown in
ref. [15] that a DBEC in the presence of a repulsive Gaus-
sian (or a vortex core), at sufficiently large density, will
exhibit density oscillations due to the manifestation of
the roton. Here, we see a manifestation of the anisotropic
roton in the static structure of the q2D DBEC.

We now address the question of what happens to this
anisotropic DBEC when the probe is moved through it
with velocity v, by numerically solving Eq. (1) with the
Gaussian potential Vp(x − vt, y). For concreteness, we
consider motion parallel and perpendicular to the tilt of

the dipoles by tilting d̂ into the x̂ and ŷ directions, re-
spectively, while fixing the direction of the probe velocity
so that v = vx̂.

Figure 2(a) shows the time-averaged drag force (aver-
aged up to t = 100τ∗) acting on a “weak” probe with
parameters Ap/µ

∗ = 0.1 and σp/ξ
∗ = 2.0. The force at

time t is given by F(t) = −
∫

d2ρ|ψ(ρ, t)|2~∇Vp(ρ, t) [16].
In this case, the probe is sufficiently weak so that no vor-
tices are nucleated in the fluid, and instead only quasi-
particles are excited. The presence of a force on the probe
signifies the excitation of quasiparticles, and thus the
breakdown of superfluid flow. There is a clear anisotropic
onset of force in these simulations that agrees very well
with the anisotropic vL given by the Bogoliubov dis-
persions in figure 1(a), resulting in critical velocities of
vc/c

∗ = 0.90(0.46) for parallel (perpendicular) motion of
this probe, determined by the velocity at which the drag
force suddenly rises.

It has been shown that vL is recovered as the true crit-
ical velocity only when the superfluid is perturbed by
a vanishingly small object [17, 18]. Additionally, while
quasiparticle excitations are a natural feature to study
when considering the breakdown of superfluid flow, they
may be difficult to observe experimentally, especially in
the limit where the probe is perturbative. Vortices, on
the other hand, are superfluid excitations in the form of
topological defects that create regions of zero density and
are easier to observe experimentally than quasiparticles.
The first measurements of vc in a BEC were from obser-
vations of the sudden onset of heating [7, 8], believed to
be related to vortex production in the BECs. More re-
cently, Ref.[19] used experimental finesse to controllably
create vortex pairs to observe vc.

Motivated by these circumstances, we investigate the
critical velocity for vortex formation in the q2D DBEC by
using a moving probe with an amplitude that is linearly
ramped from Ap = 0 to Ap/µ

∗ = 1.0 in a time 10τ∗ with
σp/ξ

∗ = 2.0. The critical velocity in this case corresponds
to the probe velocity above which vortices are formed,
signaling the breakdown of superfluidity.

We observe a significant difference in the critical veloc-
ity at which vortices are formed between a probe moving
parallel and perpendicular to the dipole polarization. In
Figure 2(b) we show the maximum number of vortices
formed within t/τ∗ = 100. The critical velocities are
vc = 0.46(0.28) for motion parallel (perpendicular) to the
dipole tilt. These values are about half the value of the
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FIG. 2: (color online) (a) The mean drag force acting on the
probe with Ap/µ∗ = 0.1 and σp/ξ∗ = 2.0 calculated up to
time t/τ∗ = 100 for motion perpendicular to (blue diamonds)
and parallel to (red squares) the dipole tilt. The dotted lines
represent the corresponding vL, in excellent agreement with
the numerical simulations. (b) The maximum vortex num-
ber produced by a probe with Ap/µ∗ = 1.0 and σp/ξ∗ = 2.0
calculated up to t/τ∗=100 for motion perpendicular to (blue
diamonds) and parallel to (red squares) the dipole tilt. The

corresponding critical velocities are: v
(⊥)
c /c∗ = 0.27 and

v
(‖)
c /c∗ = 0.46.

critical velocities obtained using the weaker probe, but
this is not unexpected [16, 20]. In a superfluid, vortices
have quantized circulation:

∮

v · dl = 2π~n/m, where v

is the velocity field of the fluid and n is an integer, cor-
responding to phase winding of 2πn around the vortex
core. We count vortices in our simulations by finding the
phase winding on a plaquette of grid points [21].

The physical mechanism that sets the critical velocity
for vortex formation is not rigorously understood. How-
ever, it is theorized that the maximum local fluid veloc-
ity about an obstacle, being larger than the background
flow velocity, sets the critical velocity via the Landau
criterion. This idea has been fruitful [16, 20], and we
find qualitative agreement with this theory here, as the
direction with lower vc is also the direction of flow most
likely to spawn vortices. However, we note that the ddi is
anisotropic although the fully condensed (ground) state
of the system is completely isotropic. The anisotropies
only appear in the dispersion relation and in the ground
state of the system in the presence of a perturbing po-
tential, which is intimately related to the dispersion re-
lation [15]. Thus, the anisotropies in the critical velocity
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FIG. 3: (color online) (a) and (b) The densities are shown for
the ‖ (top, red) and ⊥ (bottom, blue) cases for v/c∗=0.30 and
t/τ∗=125. Only the ⊥ case has exceeded its vc. (c) and (d)
Densities for v/c∗=0.50 at t/τ∗=100. The parallel case (top,
red) has exceeded its critical velocity and the perpendicular
case (bottom, blue) has been wildly excited. The obstacle is
at x = y = 0 and moving in the +x direction. The shaded
regions of this plot occur when the density exceeds 1.05n0,
and the arrow indicates the direction of dipole tilt.

for vortex formation are due to the anisotropy of the ro-
ton mode, just like the critical velocities for quasiparticle
excitations.

Figure 3 shows contour plots of the condensate density
for both parallel (red contours, top row) and perpendic-
ular (blue contours, bottom row) motion of the probe
relative to the dipole tilt for velocities v/c∗ = 0.3 (left
column) and v/c∗ = 0.5 (right column), where the probe
is moving in the x̂ direction and is located at the origin
at the time shown in figure 3. Recall that v/c∗ = 0.3
is just above vc for vortex formation for perpendicular
motion, but well beneath vc for parallel motion. This is
reflected in the figure, where in (a) no vortices have been
formed for parallel motion, while in (b) a vortex pair has
been formed for perpendicular motion for the same probe
velocity.

For the case of v/c∗ = 0.5, we see that the parallel case
in (c) has formed a vortex pair, and in (d) the perpendic-
ular case has been wildly excited. There is an important

contrast to be made in the density profiles when there is
a single vortex pair in (b) and (c). In the parallel case
(c) we see that a high density region occurs between the
vortex pair and is elongated in the polarization direc-
tion. In contrast, for the perpendicular case (b) there is
a low density region between the vortex pair and high
density regions on either side of the vortex pair. Both
the anisotropic superfluid critical velocity for vortex pair
production and these contrasting density profiles present
means to observe the effects of the roton in DBEC di-
rectly.

In addition to investigating this q2D system, we have
performed simulations for a fully trapped DBEC. For a
trap aspect ratio of λ = ωz/ωρ = 50, we find critical
velocities for vortex production are strongly anisotropic,
and the vc are numerically similar to the free case. In
these simulations, we start the probe in the center of
the trap and move outwards in the parallel or perpen-
dicular direction, linearly ramping the amplitude of the
laser down to zero by the time it reaches the zero den-
sity region. Such a simulation is experimentally realiz-
able in a DBEC of atomic 52Cr, for example, having a
permanent magnetic dipole moment of 6µB where µB is
the Bohr magneton, for a DBEC with particle number
N ≃ 18.5× 103, scattering length as = 5.0a0 where a0 is
the Bohr radius, radial trap frequency ωρ = 2π × 20Hz
and a blue-detuned laser with width σp = 1.76µm. The
speed of sound in this system is cs = 0.16cm/s in the
center of the trap.

In conclusion, we have characterized the DBEC as an
anisotropic superfluid by performing numerical simula-
tions of a blue-detuned laser moving through the system
in directions parallel and perpendicular to the dipole po-
larization. We find a sudden onset of drag on the laser
at velocities that depend strongly on the direction of
motion, and attribute the anisotropy in critical veloc-
ity to the anisotropic roton so that a measurement of an
anisotropic critical velocity in a DBEC corresponds to a
measurement of the roton in the system. Additionally,
by considering a DBEC that is experimentally realizable
with atomic 52Cr, we propose a single, stable constituent
with which to study anisotropic superfluidity, while other
systems such as superfluids of d-wave Cooper pairs are
more conceptually and experimentally difficult to control.
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