
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Spatially Modulated Phase in the Holographic Description of
Quark-Gluon Plasma

Hirosi Ooguri and Chang-Soon Park
Phys. Rev. Lett. 106, 061601 — Published 11 February 2011

DOI: 10.1103/PhysRevLett.106.061601

http://dx.doi.org/10.1103/PhysRevLett.106.061601


LY12788

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Spatially Modulated Phase in Holographic Quark-Gluon Plasma

Hirosi Ooguri1, 2 and Chang-Soon Park3

1California Institute of Technology, 452-48, Pasadena, CA 91125, USA
2Institute for the Physics and Mathematics of the Universe,

Todai Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba 277-8586, Japan
3Santa Cruz Institute for Particle Physics and Department of Physics,

University of California, Santa Cruz, CA 95064, USA

We present a string theory construction of a gravity dual of a spatially modulated phase. Our
earlier work shows that the Chern-Simons term in the 5-dimensional Maxwell theory destabilizes
the Reissner-Nordström black holes in anti-de Sitter space if the Chern-Simons coupling is suffi-
ciently high. In this paper, we show that a similar instability is realized on the worldvolume of
8-branes in the Sakai-Sugimoto model in the quark-gluon plasma phase. Our result suggests a new
spatially modulated phase in quark-gluon plasma when the baryon density is above 0.8Nf fm−3 at
temperature 150 MeV.
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INTRODUCTION

The 5-dimensional Maxwell theory with the Chern-
Simons term is tachyonic in the presence of a constant
electric field [1]. The tachyonic modes with non-zero spa-
tial momenta destabilize the Reissner-Nordström black
holes in 5-dimensional anti-de Sitter space (AdS5) if the
Chern-Simons coupling is larger than a certain critical
value. If its holographically dual quantum field theory
exists, the instability would imply a spatially modulated
phase transition in the theory. It would be interesting to
construct a model exhibiting such an instability ab initio

from superstring theory so that we can be certain that
the dual theory exists and know what it is. This has not
been demonstrated so far. For example, it was shown in
[1] that the three-charge extremal black hole in the type
IIB superstring theory on AdS5 × S5 is barely stable.

In this paper, we show that such an instability is re-
alized in the quark-gluon plasma phase of the Sakai-
Sugimoto model for QCD with Nf flavors of massless
quarks [3]. On the worldvolume of the 8-branes, there is
a U(Nf ) gauge field, and its diagonal U(1) part is dual
to the quark number (= Nc times the baryon number).
The baryons are identified with instanton solutions on
the worldvolume in this model [4]. Worldvolume solu-
tions representing QCD states with finite baryon density
and temperature have been studied [3, 5–9].

Most of the solutions with finite baryon density are
singular at the sources of baryons charges, and it is not
clear whether the supergravity approximation is appli-
cable. One of the exceptional cases is the quark-gluon
plasma phase, where there is a smooth solution repre-
senting a finite baryon density configuration.

In the Sakai-Sugimoto model, the gluon degrees of free-
dom are realized on Nc D4 branes compactified on a cir-
cle S1

c with supersymmetry breaking boundary condition
[10]. At finite temperature, we compactify the Euclidean
time on another circle S1

T , and the D4 brane world vol-

ume has the topology of S1
c ×S1

T ×R
3. In the confinement

phase, S1
c is contractible in the bulk, and the topology

of the bulk geometry is then S1
T × R

3 × S4 times a disk
bounded by S1

c . Each 8-brane wraps the thermal S1
T ×S4

and is extended in R
3. In this phase, the 8-brane starts

as a D8 brane at a point on S1
c , meanders in the bulk,

and ends as a D8 brane at another point on S1
c .

In the deconfinement phase, the thermal S1
T becomes

contractible in the bulk geometry [10]. Depending on
the relative locations of the 8-branes, the chiral symme-
try restoration takes place at or above the deconfinement
temperature [3, 5, 6]. Above the chiral symmetry restora-
tion temperature, D8 and D8 branes become separated,
and each of them has the topology of a disk bounded by
S1

T times S4. This describes a holographic dual of the
quark-gluon plasma. In this phase, it is possible to con-
struct a solution with finite baryon density that is smooth
everywhere on the worldvolume, as we will discuss below.
In this paper, we will focus on this case.

The dynamics of the 8-brane worldvolume is described
by the Dirac-Born-Infeld (DBI) action with the Chern-
Simons term. We show that there is a critical baryon
density above which the brane configuration becomes un-
stable by tachyonic modes carrying non-zero momenta.
This suggests a spatially modulated phase with a baryon
density wave.

A holographic dual of a baryon density wave was dis-
cussed in the “bottom-up” model in [11]. The instability
of the Sakai-Sugimoto model has been studied earlier, for
example in [12], but not in the chiral symmetric phase.
To our knowledge, it has not been shown whether the
Chern-Simons coupling on the worldvolume theory on
the 8-branes is large enough to trigger the spatially mod-
ulated phase transition. In this paper, we give the first
demonstration of a spatially modulated phase transition
in a “top-down” model with a well-understood dual pair.
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INSTABILITY OF HOMOGENEOUS SOLUTION

The bulk geometry above the deconfining temperature
is the near horizon geometry of the Nc D4 branes at
finite temperature compactified on the supersymmetry
breaking circle S1

c [10]. In the notation of [13], the metric
is,

ds2 =

(

U

R

)
3

2 (

−f(U)dX0
2 + d ~X2 + dX4

2
)

+

(

R

U

)
3

2

(

dU2

f(U)
+ U2dΩ2

4

)

,

(1)

where UT = (4π
3 RT )2R is the location of the horizon at

temperature T , f(U) = 1 − U3
T /U3, R3 = πgsNcl

3
s, and

dΩ2
4 is a metric for a unit four-sphere. The coordinate U

and the four-sphere represent the transverse directions to
the D4 branes. The temperature T sets the periodicity of
the imaginary time (Im X0) direction, while the period
of the compact X4 direction is arbitrary. In the chiral
symmetry restoration phase, each 8-brane is located at a
constant X4 [3, 5, 6].

The D8 and D8 branes are separated in the chiral sym-
metric phase. Let us focus on the dynamics on the D8
branes. The DBI action on the D8 brane is given by

S = −TD8

∫

d9σe−φ
√

− det(gαβ + 2πα′Fαβ) + SCS ,

(2)
where TD8 = (2π)−8l−9

s and the dilaton is given by eφ =
gs(U/R)3/4. The Chern-Simons action is

SCS =
1

48π3

∫

D8

F4 ∧ ω5(A) , (3)

where F4 = dC3 is the RR 4-form field which satisfies
1
2π

∫

S4 F4 = Nc and ω5(A) is the Chern-Simons 5-form.

For our purpose, it is sufficient to turn on the U(1)
part of the gauge field on the worldvolume. To the
quadratic order, the U(1) part does not couple to the
SU(Nf) part of the gauge field or fluctuations of the 8-
brane in the transverse direction. Couplings to the bulk
degrees of freedom are suppressed by 1/Nc. To simplify
our equations, we rescale the gauge field and the metric

as A = R2

2πα′
Ã and gαβ = R2g̃αβ. We also rescale the co-

ordinates as U = Ru, X0 = Rt, ~X = R~x and X4 = Rτ .
Following [3], we assume that the gauge field is constant
on the S4 and obtain the effective 5-dimensional action,

S/c = −
∫

M4×R

dtd3xdu u
1

4

√

− det(g̃αβ + F̃αβ)

+ α

∫

M4×R

dtd3xdu ǫµ1µ2µ3µ4µ5Ãµ1
F̃µ2µ3

F̃µ4µ5
.

(4)

with the 5-dimensional metric,

ds2 = u
3

2

(

−f(u)dt2 + d~x2 + dτ2
)

+
1

u
3

2 f(u)
du2,

f(u) = 1 − u3
T

u3
, uT =

(

4π

3
RT

)2

.

(5)

The Chern-Simons term induces anomaly in the vector
current on the boundary. In general, one needs to add
the Bardeen counter-term to restore the current conser-
vation. With only the vector electric field turned on,
the counter-term vanishes. In particular, the definition
of the chemical potential below is not modified by this.
The Chern-Simons coupling α is fixed to be 3/4 and the
factor c is

c =
8π2

3
TD8Nfg−1

s R9. (6)

Note that, modulo the overall factor c, the action (4)
depends only on uT .

If the kinetic term for the gauge field were of the
Maxwell form F̃ 2, the electric field strength could be
made arbitrarily high by raising the baryon density, and
any non-zero value of the Chern-Simons coupling would
induce an instability of the type discovered in [1]. With
the DBI action, there is an upper bound for the field
strength, and it requires a more careful analysis to deter-
mine whether the instability takes place.

Let us consider a background configuration with non-
zero Ã0 = Ã0(u). The equation of motion gives,

Ẽ(u) =
ρ̃

√

ρ̃2 + u5
, (7)

where Ẽ = −F̃tu = ∂uÃ0. The integration constant ρ̃
will be identified as a rescaled value of the quark density
ρ (= Nc times the baryon density). As advertised in the
introduction, this finite quark density solution is regular
everywhere on the brane. We choose the gauge so that
Ã0(u) vanishes on the horizon. Note that, although the
action includes the CS term, the equations of motion are
gauge invariant. The chemical potential µ̃ is given by the
asymptotic value of Ã0 at u → ∞.

µ̃ = Ã0(u = ∞) =

∫

∞

uT

du
ρ̃

√

ρ̃2 + u5
. (8)

Let us perturb this configuration as F̃ → F̃ + δF̃ .
To find an onset of the instability, we look for a static
normalizable solution in the linearized equation for δF̃ ,

∂u





u
5

2 f(u)
√

1 − Ẽ(u)2
δF̃ui



 − u−
1

2

√

1 − Ẽ(u)2∂jδF̃ij

− 2αǫijkẼ(u)δF̃jk = 0.

(9)
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If we apply the operator ǫijk∂j and use the Fourier mode

δF̃ij = ǫijkvke−iklx
l

φ(u) with an eigenvalue ik = i|~k|
(the eigenvalue −ik gives the same result), φ(u) obeys a
second order ordinary differential equation,

[

− d

du
f(u)

√

ρ̃2 + u5
d

du
+

−4αρ̃k + u2k2

√

ρ̃2 + u5

]

φ(u) = 0.

(10)
At the horizon u = uT , we use the in-going boundary
condition for static waves.

FIG. 1: The critical quark density ρ̃ as a function of the
Chern-Simons coupling α. The instability takes place in the
shaded region with α > αcrit = 1/4. The value α = 3/4 for
the Sakai-Sugimoto model is indicated by the red vertical line.

We solved the linearized equation (10) numerically for
general values of the Chern-Simons coupling α. For each
value of the Chern-Simons coupling α > 1/4, we found
a critical value of ρ̃ above which the instability takes
place. Figure 1 depicts the critical quark density ρ̃crit as
a function of α. We note that ρ̃crit diverges as α → 1/4.

We can also show analytically that α = 1/4 is the lim-
iting value of the Chern-Simons coupling. Let us rescale
variables as ū = ρ̃−

2

5 u, k̄ = ρ̃−
1

5 k, and take the limit
ρ̃ → ∞ in the equation (10). We find

[

− d

dū

√

1 + ū5
d

dū
+

−4αk̄ + ū2k̄2

√
1 + ū5

]

φ̃(ū) = 0. (11)

We have verified that a solution to this equation ap-
proaches the solution to (10) in the sense of the L2 mea-
sure. From the numerical evaluation of (11), we find that
the momentum k̄ with non-trivial normalizable solutions
tends to infinity as we take ρ̃ → ∞ and α approaches the
limiting value. Anticipating this, we take k̄ → ∞ in (11)

while keeping v =
√

k̄ū and obtain,

(

− d2

dv2
− 4α + v2

)

φ̃(ū) = 0. (12)

This can be solved by the harmonic oscillator ground
state φ̃(v) = e−v2/2 with α = 1/4.

In the quark-gluon plasma phase, the Chern-Simons
coupling on the worldvolume theory is α = 3/4 and is
above the limiting value of 1/4. At this value of α, the

critical quark density is numerically evaluated as

ρ̃crit = 3.714 u
5

2

T . (13)

Let us express the critical quark density in the original
set of variables. The quark density ρ is defined by a
variation of the Lagrangian density by E = ∂uA0. Note
we rescaled the action by the factor c in (6) and the gauge

field is rescaled as A = R2

2πα′
Ã. We should also remember

that we rescaled our spacetime coordinates by R. The
physical quark density ρ is then related to ρ̃ above as

ρ = c

(

R2

2πα′

)−1
ρ̃

R3
=

2

3(2π)5
Nf

gs

R4

l7s
ρ̃. (14)

Substituting (13) into this, the critical quark density at
α = 3/4 is given as

ρcrit = c0NfNc(gsNcls)
2T 5, (15)

where c0 = 3.714(2/3)6π3 ≈ 10.

It is important to make sure that we can ignore back-
reaction of the quark density to the bulk geometry. Note
that the critical baryon density is given by dividing the
quark density ρcrit by Nc and that the result is propor-
tional to Nf (gsNc)

2T 5. The Nc dependence comes only
in the combination of the ’t Hooft coupling gsNc, which
is kept finite in the large Nc limit. Since the baryons can
be thought of as D4 branes wrapping S4 [14, 15], their
backreaction becomes significant only when their density
scales as Nc or more and is negligible in the large Nc

limit provided Nf ≪ Nc. Another way to see this is to
evaluate the energy density due to the electric field using
the action (4) and show that it is proportional to Nf/gs

times some power of gsNc. This is the same scaling be-
havior as the tension of the Nf 8-branes, which does not
generate backreaction.

It is an interesting exercise to express the critical den-
sity in terms of QCD quantities. The string parameters
gs and ls are related to the Yang-Mills coupling gY M and
the Kaluza-Klein scale MKK for the compactification cir-
cle S1

c as g2
Y M = 4π2gsls/L and MKK = 2π/L, where L

is the circumference of S1
c [13]. The critical baryon den-

sity can then be written as,

ρcrit

Nc
=

c0Nf

4π2

λ2

M2
KK

T 5, (16)

where λ = g2
Y MNc. The constants MKK and λ can be

determined by fitting, for example, with the pion decay
constant and the mass of the ρ-meson, as MKK = 949
MeV and λ = g2

Y MNc = 16.6 [3]. The deconfinement
temperature, where the thermal cycle S1

T becomes con-
tractible, is at MKK/2π = 151 MeV. Interestingly, this
turns out to be close to the critical temperature expected
for the quark-gluon plasma [16]. If we substitute T = 150
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MeV in (16), for example, the critical baryon density
comes out as,

ρcrit

Nc
≈ 0.8Nf fm−3. (17)

For Nf = 2, this is about 10 times the nucleon density
in atomic nuclei.

At the critical density ρ = ρcrit, the instability begins

to occur at the momentum k = 2.39u
1/2
T , which in the

original coordinates is given by k/R ≈ 10T . If we set
T = 150 MeV, the momentum is about 1.5 GeV, and the
corresponding wave length is 0.8 fm.

NON-LINEAR SOLUTION

We can construct a solution to the full non-linear equa-
tions carrying a fixed non-zero momentum whose energy
is lower that that of the original translationally invariant
state. Following [2], we make the ansatz,

Ãt = a(u), Ãx + iÃy = h(u)e−ikz , (18)

with all other components vanishing. Although there
may be a non-linear solution with even lower energy, it
is interesting that one can construct a candidate ground
state with such a simple ansatz

With this ansatz, the equations of motion become,

∂u

[

u
√

u3+k2h(u)2a′(u)√
1−a′(u)2+f(u)h′(u)2

]

+ 4αkh(u)h′(u) = 0

∂u

[

uf(u)
√

u3+k2h(u)2h′(u)√
1−a′(u)2+f(u)h′(u)2

]

+ 4αka′(u)h(u)

− k2uh(u)
√

1−a′(u)2+f(u)h′(u)2√
u3+k2h(u)2

= 0. (19)

We assume that the embedding coordinate τ is constant,
which is consistent with the equations of motion. The
first equation can be integrated easily, and gives us the
quark density,

u
√

u3 + k2h(u)2a′(u)
√

1 − a′(u)2 + f(u)h′(u)2
+ 2αkh(u)2 = ρ̃ . (20)

Using this expression, the second equation becomes

K(u)∂u (K(u)f(u)h′(u)) − k2u2h(u)

+4kαh(u)(ρ̃ − 2kαh(u)2) = 0 ,
(21)

where

K(u) =

√

ρ̃2 + u5 + kh(u)2(ku2 − 4ρ̃α + 4kα2h(u)2

1 + f(u)h′(u)2
.

(22)
The equation (21) can be solved numerically. Since we

have a family of solutions parametrized by the momen-
tum k, we can look for the one which minimizes the free

energy density F , given by

F(ρ) = µρ +

∫

duLE , (23)

where LE is the DBI Lagrangian plus the Chern-Simons
term. Note that the free energy F is a function of ρ, and
not µ. We have identified the momentum with the lowest
value of the free energy, and the expectation value of the
current operator 〈J̃〉 dual to h(u) can be read off from
the asymptotic behavior of the normalizable solutions.

So far, we have focused on the dynamics on the D8
brane worldvolume. The analysis on the D8 branes is
identical except that the Chern-Simons coupling has the
opposite sign due to the CPT invariance. There are sep-
arate gauge fields AL and AR on the D8 and D8 branes,
respectively, and they cause the instability above the crit-
ical charge density. The baryon vector current is dual to
(AL + AR) and the axial current is dual to (AL − AR).
The baryon charge density turns on the same amount
of chemical potentials for both AL and AR. Above the
critical baryon density, the instability will take place on
both branes, and both vector and axial baryon currents
are generated on the boundary. In fact, directions of the
momenta on the D8 and D8 branes can be different, and
the currents JL and JR dual to AL and AR can carry
momenta in different directions.
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