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Abstract

Wave-vector resolved radio frequency (rf) spectroscopy data for an ultracold trapped Fermi gas

are reported for several couplings at Tc, and extensively analyzed in terms of a pairing-fluctuation

theory. We map the evolution of a strongly interacting Fermi gas from the pseudogap phase into

a fully gapped molecular Bose gas as a function of the interaction strength, which is marked by

a rapid disappearance of a remnant Fermi surface in the single-particle dispersion. We also show

that our theory of a pseudogap phase is consistent with a recent experimental observation as well

as with Quantum Monte Carlo data of thermodynamic quantities of a unitary Fermi gas above Tc.

PACS numbers: 03.75.Ss,03.75.Hh,74.40.-n,74.20.-z

1



While the existence of a high-temperature superfluid phase in the BCS-BEC crossover

of a strongly interacting Fermi gas is experimentally well established, important questions

remain as to the nature of the gas above the superfluid transition temperature Tc. In

particular, the question of whether or not a pseudogap state exists and how to identify it is

of importance [1]. This is a question that may have relevance to the controversy surrounding

the pseudogap state in the high-Tc cuprates. While the origin of this state in the cuprates

is a hotly debated topic, with atomic Fermi gases we can answer the simpler question of

whether or not strong interactions and pairing fluctuations alone can lead to a pseudogap

phase. This, in turn, tells us whether using such an approach to explain the pseudogap

phase in the cuprates is a viable option or if other mechanisms are required.

As a function of increasingly strong attractive interactions, a Fermi gas exhibits a smooth

crossover (called the BCS-BEC crossover), from a weakly attractive Fermi gas with a super-

fluid transition explained by conventional BCS theory, to a Fermi gas where interparticle

attractions are so strong that the fermion pairs form molecules and the gas is well described

as a molecular Bose gas with a Bose-Einstein condensation transition. In the BCS limit the

phenomena of Cooper pairing and superfluidity occur simultaneously at the phase transi-

tion, while in the BEC limit pairing and Bose condensation are decoupled with pairing of

fermionic atoms into molecules occurring well above the condensation temperature. The

pseudogap phase refers to the normal state of a strongly interacting Fermi gas in the center

of this crossover, where it is proposed that pairs exist above the superfluid transition in

analogy with the normal state of the gas in the BEC limit. However, unlike the pairs in the

BEC limit, the pairs in the pseudogap state have many-body character with the underlying

Fermi statistics playing a crucial role, in analogy with the Cooper pairs of the BCS limit.

A key prediction of theories of the pseudogap phase is that there should be a smooth evo-

lution from the many-body pairs in the center of the crossover to the molecular pairs in the

BEC limit [1, 2] and accordingly, in order to verify the existence of a pseudogap phase, it is

critical to examine the evolution of the spectral function from the center of the crossover to

the molecular limit [3].

Based on two recent experiments, conflicting conclusions have been reached about the

existence of a pseudogap state in the strongly interacting Fermi gas. On the one hand,

thermodynamic measurements [4] have been interpreted as well described by Fermi liquid

theory, without the need for a pseudogap state. On the other hand, momentum-resolved rf
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spectroscopy [5], which measures the single-particle spectral function, has been interpreted

as evidence for a pseudogap state above Tc.

In this work, we present a theoretical investigation of the pseudogap regime based on the

t-matrix pairing-fluctuation approach of Ref.[3], addressing both the single-particle spectral

function and the thermodynamics of the gas, as a function of interaction strength in the

BCS-BEC crossover. We find that, in the pseudogap regime, the single-particle dispersion

back-bends at a wave vector kL near the Fermi wave vector kF , indicating the existence of a

remnant Fermi surface in this strongly interacting gas and the importance of Fermi statistics

to the pairing. As interactions are increased towards the BEC limit, kL disappears rapidly

when entering the regime of molecular pairing. This picture is supported by a comparison

of our theoretical results, where we include the effects of the trapping potential, with new

experimental data using momentum resolved rf spectroscopy to probe the gas for different

interaction strengths. In addition, we show that the theory also reproduces the observed

linear behavior in the thermodynamics.

By the experimental technique introduced in Ref.[6], excitations of the trapped gas pro-

duced by an rf pulse are analyzed by time-of-flight imaging to determine the wave vector

of the excited atoms once the trap has been switched off. The new data are presented

with an improved signal-to-noise ratio at the critical temperature Tc, which is accurately

determined as the temperature where the condensate fraction disappears. We concentrate

in the coupling range 0.0 <
∼ (kFaF )−1 <

∼ 1.0, because the evolution of interest from the pseu-

dogap state to the molecular Bose gas occurs on the positive side of the resonance. Here,

aF is the scattering length associated with the Fano-Feshbach resonance and kF is given by

h̄2k2

F/(2m) = EF = h̄ω0(3N)1/3, where h̄ is Planck constant, m the atom mass, N the total

number of atoms, and ω0 the average trap frequency (we set h̄ = 1).

Ultracold Fermi gases are peculiar systems, in that their interparticle coupling can be

increased to the point when a description in terms of a gas of molecular bosons holds, for

which a real gap exists in the single-particle spectra. This molecular (two-body) physics

is of no interest in the context of the pseudogap, in a similar fashion of molecular binding

in vacuum being distinct from Cooper pairing at finite density in the presence of a Fermi

surface (cf. footnote 18 of Ref.[7]). The question then arises about what fermionic feature

distinguishes the pseudogap from the molecular phase. We shall find that the back-bending

of the dispersion curves obtained from the single-particle spectral function A(k, ω) (with
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FIG. 1. Experimental (circles) and theoretical (full lines) EDC for the trap at Tc, for several

couplings and wave vectors.

wave vector k and frequency ω) occurs at a wave vector kL which remains close to kF over

a wide coupling range even when approaching the molecular limit. We refer to this special

wave vector as kL because it is reminiscent of the Luttinger theorem [8], according to which

in a normal Fermi liquid the radius kF of the Fermi sphere is unaffected by the interaction.

Figure 1 compares the experimental and theoretical energy distribution curves (EDC) at

Tc for five different couplings in the window of interest (see Ref.[9] for details). We emphasize

that the experimental data bear on an absolute normalization, in that only the integral

over wave vector and energy of the EDC curves (and not the separate spectra) has been

normalized to unity [9]. For this reason, there is no independent normalization in the various

panels at different k. This renders quite stringent the comparison with the corresponding

theoretical calculations, which in turn contain no adjustable parameters. Good agreement

results from this comparison. In particular, the theoretical calculations well reproduce the

asymmetry of the experimental curves between positive and negative energies, in addition

to the peak positions, widths and heights (note how the latter change by about one order

of magnitude from small to large k). Note further the excellent agreement between the

theoretical and experimental negative energy tails, and the gradual flattening of the EDC

curves for increasing coupling due to the increase of intrapair correlations.

In Fig. 2 the dispersion and full width at half maximum of the peak at lower energies

are reported over a dense set of k values for the same couplings of Fig. 1, and compared

with our theoretical calculations. Note that a characteristic back-bending is revealed from
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FIG. 2. (a) Dispersions and (b) widths of the low-energy EDC peak. Experimental data (circles)

and theoretical calculations for the trap (full lines) are shown for the same couplings of Fig. 1,

and compared with the contribution from the radial shell with the largest particle number (dashed

lines). In the left panels the free-particle dispersion k2/(2m) is also reported for comparison (thin

full lines).

these dispersions [10]. This kind of back-bending is typical of a BCS-like dispersion, and is

associated with the presence of a pseudogap in a strongly interacting Fermi system [3, 5, 12–

14]. In addition, the large values of the widths (which are at least of the order of EF )

and their asymmetric behavior between k < kF and k > kF are associated with strong

deviations from the expected behavior of a normal Fermi liquid (which requires instead the

quasi-particle widths to be vanishingly small at kF [15]), and confirm the fact that single-

particle states in this region constitute poor quasi-particles. Large values of the widths are

not surprising in the context of the pseudogap physics that results from pairing fluctuations

[3]. Large widths were also obtained by the self-consistent t-matrix approach of Ref. [16],

which however masked the occurrence of a pseudogap near kF .

It is relevant to discuss how trap averaging affects the above results, because different
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FIG. 3. (a) Coupling dependence of the Luttinger wave vector kL for a homogeneous system at

Tc, according to the theory of Ref.[3] (full line) [the value at unitarity from the QMC calculation

of Ref.[17] is also reported (star)]. The inset shows the temperature dependence of kL at unitarity

(full line), and compares it with those obtained from the temperature dependence of the chemical

potential of the non-interacting (dashed line) and interacting (dashed-dotted line) systems. (b)

Theoretical (full line) and experimental (squares) coupling dependence of kL for the trap system

at Tc.

radial shells in the trap correspond to different locations in the coupling-vs-temperature

phase diagram of the homogeneous system. A reasonable hypothesis is that the radial shell

with the largest particle number (whose radius rmax is estimated to be (0.5− 0.6)RF where

RF = [2EF/(mω2

0
)]1/2 is the Thomas-Fermi radius) contributes most to the total signal.

The dispersions and widths contributed by this shell at rmax are represented by dashed lines

in Fig. 2, which show good agreement with the complete calculation. This indicates that

both the back-bending of the dispersion relations and the associated large widths are not

an artifact of trap averaging.

Despite these deviations from the behavior of a normal Fermi liquid, in the experimental

data and theoretical calculations there yet appears a feature which is preserved from the

physics of a Fermi liquid. That is the Luttinger wave vector kL where the back-bending

occurs, which is plotted at Tc vs (kF aF )−1 in Fig. 3, for a homogeneous [panel (a)] and

trapped [panel (b)] system.

Figure 3(a) shows that for a homogeneous system kL drops rapidly to zero when

(kFaF )−1
≃ 0.75, where the pseudogap in A(k, ω) turns into a real gap and the molec-

ular limit is reached. Accordingly, we identify the boundary between the pseudogap and
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molecular phases where this drop occurs. Along this evolution into the molecular regime,

the disappearance of the underlying Fermi surface about occurs when the molecular size be-

comes smaller than the interparticle spacing. The existence of a remnant Fermi surface with

an enclosed volume consistent with Luttinger theorem was already pointed out by ARPES

experiments for the pseudogap phase of high-Tc superconductors [18], but its importance

for delimiting the pseudogap region was not appreciated in that context [19] because the

interparticle interaction could not be controlled. The inset of Fig. 3(a) shows the tempera-

ture dependence of kL calculated for a homogeneous system at unitarity (full line). At high

temperatures when the pseudogap closes up, we have identified kL as the value where the

dispersion of the peak at lower energy in A(k, ω) crosses the chemical potential [9]. This does

not contradict our argument that at low temperatures the presence of a pseudogap requires

an underlying Fermi surface, since at high temperatures the underlying Fermi surface of a

Fermi liquid is not related to a pseudogap. The plot also shows the temperature dependence

of kµ0 =
√

2mµ0(T ) (dashed line) and kµ =
√

2mµ(T ) (dashed-dotted line), where µ0(T )

and µ(T ) are the chemical potentials of the non-interacting and interacting Fermi systems,

in the order, at the temperature T . Note that kL about coincides with kµ0, while kµ is not

related with kL.

Figure 3(b) shows the coupling dependence of kL at Tc for the trapped system, for which

the theoretical predictions can be directly compared with the experimental data (the latter

are obtained by a BCS-like fit to the dispersions of Fig. 2(a), as explained in Ref.[9]). The

good comparison that results between theory and experiment confirms our identification of

kL as the relevant quantity for identifying the remnant Fermi characteristics of the system

in the pseudogap phase.

However, the occurrence of a pseudogap for a unitary Fermi gas above Tc has recently

been questioned, following a result reported in Ref.[4] where a linear dependence of the

equation of state as a function of [kBT/µ(T )]2 (kB being Boltzmann constant) was fitted

by the Fermi-liquid equation of state and then interpreted [20] as evidence that the Fermi-

liquid theory with no pseudogap can describe a unitary Fermi gas above Tc. To compare

with the data of Ref.[4] and resolve this controversy, we have used the theoretical approach

of Ref.[3], which contains a robust pseudogap associated with a non-Fermi-liquid behavior

consistent with the data obtained by momentum resolved rf spectroscopy, also to calculate

the thermodynamic properties of a homogeneous system above Tc. Figure 4(a) reports the
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FIG. 4. Thermodynamics of a homogeneous Fermi gas at unitarity. (a) Pressure vs [kBT/µ(T )]2:

Experimental data from Ref.[4] (circles) are compared with QMC data from Refs.[21] (squares)

and [22] (triangles), and with the t-matrix (full line). In the inset, the variable [kBT/µ(T )]2

is transformed to (T/TF )2 according to the t-matrix. (b) Energy vs (T/TF )2 at fixed density:

Experimental data from Ref.[23] (circles) are compared with QMC data from Refs.[21] (squares)

and [22] (triangles), and with the t-matrix (full line). The inset shows the density of states per

spin (in units of mkF /(2π)2) for several temperatures in units of Tc according to the t-matrix, and

contrasts it with the non-interacting (n.i.) result. (c) Specific heat per particle vs T/TF obtained

from the t-matrix (full line), the experimental data of Ref.[23] (circles), and the QMC data of

Ref.[21] (squares) - the dotted line is a guide to the eye for the QMC data. The behavior of the

non-interacting Fermi gas (broken line) is reported for reference [9].

pressure in the grand-canonical ensemble vs [kBT/µ(T )]2 as in Ref.[4], and shows that the

linear behavior seen in the experimental data and QMC calculations also results from our

t-matrix approach, both above and below the temperature at which the pseudogap appears
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(indicated by the vertical arrow). The inset of Fig. 4(a) shows that this linear behavior can

be ascribed to the pronounced temperature dependence of the chemical potential, because

a non-linear behavior results when transforming [kBT/µ(T )]2 to (T/TF )2 over the relevant

range. The same change of variables can be performed in the experimental [23] and QMC

[21, 22] data, to obtain the total energy in the canonical ensemble as a function of (T/TF )2

reported in Fig. 4(b). This shows that in the new variable the linear behavior is lost.

Yet, it remains difficult to appreciate directly from this thermodynamic quantity the

presence of a pseudogap in a unitary Fermi gas above Tc even by the t-matrix calculation,

despite the fact that a pseudogap is clearly present in the single-particle density of states

obtained by the t-matrix as shown in the inset of Fig. 4(b) where deviations from the

non-interacting behavior
√

(ω + µ(Tc))/EF are evident. Accordingly, by suitable numerical

differentiation of the energy data we have obtained in Fig. 4(c) the specific heat vs T/TF .

A sharp upturn of this thermodynamic quantity, beginning at a temperature T ∗ well above

Tc where the pseudogap sets in, results clearly from the t-matrix calculation, and it is also

visible from the QMC data at the corresponding value of Tc.

The experimental data in Fig. 4(c) appear too scattered to draw definite conclusions

about the presence of the upturn and thus of a pseudogap above Tc. It should be men-

tioned, however, that a similar upturn of the specific heat at a temperature T ∗ above Tc

was measured in underdoped high-Tc cuprates and interpreted as revealing the onset of the

pseudogap regime, whereby a “residual superconductivity” remains far above Tc [24].

In conclusion, we have provided clear experimental and theoretical evidence for non-

Fermi-liquid behavior in the normal phase of a strongly interacting Fermi gas, which we have

qualified in terms of a pseudogap picture. We have further shown that this picture, that

appears evident in the single-particle dynamics, is also consistent with the thermodynamic

behavior of the system.
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