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Abstract

Models for dense sheared granular materials indicate that their rheological properties depend

on particle size, but the representative size for mixtures is not obvious. Here, we computationally

study pressure on a boundary due to sheared granular mixtures to determine its dependence on

particle size distribution. We find that the pressure does not depend monotonically on average

particle size. Instead it has an additional dependence on a measure of the effective free volume per

particle we adapt from an expression for packing of monosized particles near the jammed state.

PACS numbers: 47.57.Gc, 47.57.Qk, 81.05.Rm, 83.10.Pp, 92.40.Ha
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FIG. 1: (a) Sketch of s and d from Equation 2. Hatched region indicates an effective free volume

described later in the text. (b) Image from a small section of the simulated sheared particles

described in the text.

The ability to predict the stresses particulate mixtures exert on their boundaries is impor-

tant for many critical natural and industrial applications. For example, predicting boundary

stresses due to bouldery debris flows – massive flows of rocks and boulders – is important for

understanding landscape morphology as well as for hazard mitigation [1]-[4]. Additionally,

wear associated with boundary stresses can considerably shorten the life of industrial ma-

chinery [5]. However, a predictive model for stresses due to dense sheared granular mixtures

is elusive.

A formulation proposed by Bagnold in the 1950’s [6] has held for monodisperse systems

in a general sense, far beyond the regime of rapid collisional flows for which it was derived,

provided the particles are sufficiently hard [7]. Based on considerations of momentum trans-

fer via collisions in sheared flows, Bagnold proposed the average pressure p scales with both

the particle size d and the shear rate γ̇ squared with some form of the structure ξ:

p ∼ f(ξ)ρd2γ̇2 (1)

where ρ is the material density of the particles, and f(ξ) is a functional form of the structure

of the granular materials. For his system, Bagnold proposed f(ξ) = λ2 where:

λ = d/s, (2)

is the “linear concentration”; here, s is the mean distance between particles (e.g., Fig. 1

(a)). Bagnold demonstrated that for certain particle arrangements λ = ((νmax/ν)1/3 − 1)−1

where νmax the maximum solids fraction, ∼ 0.74 for uniform spheres. Others (e.g., Refs.

[8], [9]) have shown the general form of Equation 1 applies to a broader range of monosized

systems, using different forms for f(ξ) [8] and f(ξ)d2 [9].

These and other realizations of Equation 1 contain dependencies on particle size distribu-

tion. For a mixture of different sized particles, it is not obvious what the representative size
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should be, nor what one might use for νmax. Further, for the typical disorder that arises in

a mixture of different sized particles there is not a clear lengthscale over which two particles

should be considered neighbors based on which an average s should be calculated (e.g., Fig.

1(b)).

Recently, significant advances have been made in understanding pressure and structure

associated with quasi-static deformation of monosized granular materials above the jam-

ming transition, i.e., systems where the solids fraction ν is greater than the minimal solids

fraction required for mechanical stability νc [10]-[15]. For example, simulations (e.g., [10])

and experiments [12] have shown p ∼ (ν − νc)
β where β depends on the contact interaction

potential between particles. Their results further suggest a power law relationship between

the number of contacts per particle, Z, and p. These results suggest an alternative ap-

proach for continuously sheared mixtures where information regarding how the particle size

distribution affects packing may be contained in measures of the structures such as Z.

We probe the dependence of boundary pressure associated with dense sheared granular

mixtures on their particle size distributions using simulations of binary mixtures of different

sized particles. We find there is a nonmonotonic dependence of p on the average particle

size d. We demonstrate this can be modeled using a relationship between effective packing

efficiency and Z through a formulation derived for the packing for monosized systems of

spherical particles near the jammed state [14], [15].

For our simulations we use a soft sphere Discrete Element Method (DEM) [16]. Particle-

particle and particle-wall contact forces are represented using a non-linear force model ac-

cording to Hertzian and Mindlin contact theories and some experimental parameterization

[17] [18]. For most of the results described here the particles have material properties similar

to quartz [18]. We discuss similarities and differences using softer particles near the end.

We primarily simulate binary mixtures of 10 mm and 20 mm particles (with a polydisper-

sity of 10% in the diameter of each component to inhibit crystallization). The particles are

sheared in a plane Couette cell (as in Fig. 2) in the absence of gravity similar to Bagnold’s

experiments [6] and simulations performed by daCruz et al. [8]. Two parallel walls contain

the particles in the y-direction, one of which moves with constant velocity Uw as illustrated

in Fig. 2(a). The boundaries are periodic in the other two directions. Most of the simula-

tions are constant volume simulations. For these, the Couette cell has dimensions of height

H = 240 mm, length L = 288 mm (in the streamwise direction) and breadth B = 150 mm.
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FIG. 2: (a) Image from one time step in a parallel Couette cell simulation described in the text for

fL = 0.25. UW =830mm/s (γ̇ = 3.44s−1) (b)-(d) Some kinematics for the mixture shown in (a).

(b) Streamwise velocity profile. (c) Solid volume fraction profiles for each component of the system

and the mixture. (d) The fraction of large particles in the central region, i.e., fLM = ν20mm/νmix

for the region within the dashed lines shown in (c) (y = [40, 200]mm).

The total mass of the particles is ∼ 15.6kg for all simulations we report here, resulting in a

solids fraction of ∼ 56.8%. We also perform constant pressure simulations, which we discuss

shortly. To minimize particle slipping at the top and bottom boundaries, we affix 10 mm

particles to the walls in a random array [19].

Under these conditions the velocity profile is linear (Fig. 2(b)) and segregation is mini-

mized (Figs. 2(c)-(d)). Initial segregation of large particles away from the walls is minimal

and quickly stabilizes, as illustrated by the temporal plot of the fraction of large particles fL

in the middle section shown in Fig. 2(d). There is no segregation in the streamwise direction.

Thus, these boundary conditions effectively isolate the effect of particle size distribution on

the boundary pressure.

Boundary pressures are obtained by summing the y−components of all forces on the

particles affixed to the boundary and dividing the sum by LB. The pressure data fluctuate

but stabilize after approximately 10s. The probability distribution function of the boundary

pressures after steady state is reached is essentially lognormal [20] so we consider the average

well-behaved. We report the average pressure p for the second 10 seconds of data from several

computational experiments where the shear rate γ̇ and fL are varied from one experiment

to the next: γ̇ = 3.44s−1 to 11.44s−1, and fL=0 to 1. The average particle size for each
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FIG. 3: (a) p vs. γ̇ for several fractions of large particles as indicated in the legend. The solid

line represents a slope of two. (b) p and Z vs. fL for γ̇ = 3.44s−1. (c) Profile of Z(y) for several

fractions of large particles (symbols indicated in (a)). A minor asymmetry persists associated with

the initial configuration of the particles. (d) Parametric plot of p as a function of Z for the results

shown in (b).

mixture d is approximately proportional to fL: d ∼ 10(1 + fL) mm.

Figure 3(a) shows p as a function of γ̇ for different values of fL. As in Equation 1, for any

particular mixture p ∼ γ̇2. However, for any particular value of the shear rate, the pressure

does not depend monotonically on average particle size. As fL increases, the normal stress

first decreases then increases. This is made particularly clear by plotting p vs. fL for one

particular shear rate (γ̇ = 3.44s−1) in Fig. 3(b). Plotting boundary shear stress τ vs. γ̇ and

vs. fL yields similar trends. We focus here on developing a model for the variation of p with

particle size distribution and comment on the extension to τ and µ∗ = τ/p in the summary.

We consider results for monosized granular materials near the jammed state suggesting

a power law relationship between p and Z [10]-[13]. In our mixtures, Z(y) is sensitive to

minor variations in particle concentration and segregation (Fig. 3(c)), so we consider the

value averaged across the cell Z and plot it as a function of fL along with p in Fig. 3(b).

Both Z and p follow the same trend as fL is varied. However, in a parametric plot of p vs.

Z [Fig. 3(d)], in contrast with monosized systems near the jammed state [10]-[13], there is

no simple relationship between p and Z for steadily sheared mixtures.

We propose that the differences between the dependence of p on Z in monosized systems

and in our mixture is related to the variability of the potential packing efficiency from one
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FIG. 4: (a) H vs. fL for several values of fL, in constant pressure simulations where papp =

17.2kPa, and Uw = 830mm/s (γ̇ ∼ 3.44mm/s). (b) p∗ vs. λ2
Z (k = 1.2) for several mixtures,

ν = 0.568: those from Fig. 3(b) (•), and those where d = 15mm: (i)12 & 18mm (ii) 14 & 16mm

(iii) 10, 15, & 20mm (iv) 10,12.5,15, 17.5, & 20mm (v) 15mm particles (�). The solid line shows

p∗ = Kλ2
Z , K=10.1; k=1.2. Dashed line indicates limiting results from higher values of p and ν.

mixture to the next under otherwise identical conditions. We investigate this hypothesis

by considering the variation in ν with fL under analogous constant pressure simulations.

For these, the mixtures are subjected to the same applied pressure at the boundaries papp

and the upper boundary is allowed to move in the y-direction. As in the constant volume

simulations, steady state conditions are reached after ∼ 10s [20]. In Fig. 4(a) we plot the

height averaged over the second 10s of each simulation, for several values of fL. The trend

is similar to that of p vs. fL (Fig. 3(b)): for the same applied pressure, ν is higher for the

mixtures for which fL ≈ 0.5 compared to the mixtures for which fL ≈ 0 or fL ≈ 1. This

indicates that while the different constant volume simulations have the same porosity, the

free space effectively available to the particles in the mixtures for which fL ≈ 0.5 is greater

than those for which fL ≈ 0 or fL ≈ 1. We hypothesize that the variability of this effective

free space gives rise to a variability of what Bagnold referred to as a dispersive pressure [6]

- the pressure resulting from interparticle collisions.

To quantitatively model the variation of available free space (and ultimately p) with Z,

we evoke concepts associated with free volume per particle W from quasi-static mono-sized

systems [14]-[15]. By experimentally measuring Voronoi volumes (Vv) and Z associated with

each particle (volume Vp) in a static granular system, Aste et al. [14] showed that W = Vv−Vp

scales inversely with Z. Analytical results of Song et al. [15] show that W = 2
√

3Vp/Z. For

our constant volume simulations, ν is invariant from one experiment to the next, so for the

whole system, W = (1− ν)HLB/N where N is the total number of particles. However, the

available free space is somewhat less than that; we define Weff ≡ (νmax − ν)HLB/N . For a
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computationally accessible measure of Weff , we consider the analytical results of Song et al.

[15] and propose a similar relationship between Weff and Z:

Weff/Vp = k/Z. (3)

where k is an unknown constant, but must satisfy k < 2
√

3 since Weff < W [21]. To relate

the above discussion to p, we return to Bagnold’s λ (Equation 2). Since a direct measure

of an average s for our mixtures is ambiguous, we define an effective average space between

particles seff according to Weff . As we sketch in Fig. 1(a), we relate Weff to an effective

spacing between particles geometrically via spherical shells, and seff is twice the thickness

of these shells:

Weff(z)/Vp = π/6
[

(d + seff)3 − d3
]

/(πd3/6) (4)

We note that for these definitions, seff and Weff are nonzero at random loose packing [21].

Equating the righthand sides of Equations 3 and 4 and solving for λZ ≡ d/seff , we find:

λZ =
[

(k/Z + 1)1/3 − 1
]

−1

(5)

With this, we propose a modified version of Bagnold’s model for pressure (Equation 1)

associated with dense sheared mixtures of different sized particles: p ∼ ρλ2

Zd
2

γ̇2. Combining

this with Equation 5 we consider a dimensionless p:

p∗ = p/(ρd
2

γ̇2) = K
[

(k/Z + 1)1/3 − 1
]

−2

(6)

where K is a proportionality constant. We perform a 2-parameter nonlinear least squares

fit to find k = 1.2 and K = 10.1. We then plot p∗ vs. λ2

Z in Fig. 4(b) for the data from

Fig. 3(b) and analogous results from other size distributions detailed in the caption. The

collapse of the data suggest that Equations 5 and 6 provide an extension to Bagnold’s classic

relationship for pressures [6] associated with dense flowing granular mixtures. The results

for τ are similar as one might expect from Bagnold’s model which by design predicts p and

τ . Interestingly, the power law dependence of τ on λZ is slightly different, and there is

a dependence of µ∗ = τ/p on fL that depends on the boundary conditions as we discuss

in another paper [22]. Considering analogies with Bagnold’s model, one may also consider

whether or not λZ is directly related to d and s averaged over a length scale that captures

the local structure, such as a cluster size or a correlation length [9]. Alternatively, λZ may
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effectively capture such a measure of structure somewhat independent of d, issues we are

currently investigating.

In addition to providing an extension to Bagnold’s stress scaling for mixtures, these results

provide some links between some established behaviors of monosized granular materials

near the jammed state and dense flowing granular mixtures. Given this, it is interesting

to consider the level and limits of their applicability to granular mixtures whose particle

and mixture properties vary significantly from those we used for these results. For example,

preliminary investigations into the dependence of these results on particle hardness show

quantitative differences only for somewhat softer particles. Specifically, for particles with

an elastic coefficient up to four orders of magnitude smaller than for the results shown here

[18], p ∼ λ2

Zρd
2

. Still, over this range Z increases with decreasing hardness (e.g., Ref.

[23]) while Weff does not, so k must depend inversely on particle hardness. In contrast,

for systems of significantly softer particles, the rheology changes qualitatively, and p is no

longer proportional to γ̇2 [23]. Nevertheless, for a constant value of γ̇ we find a similar

non-monotonic relationship exists between p, Z, and d . While a similar framework may

apply to these systems, the full effect of varying particle hardness and indeed other particle

properties such as material friction coefficient (e.g., Ref. [24]) is not yet clear. Geometric

considerations likely further constrain the applicability for binary mixtures with extreme

particle size differences when the size of the smaller particles approach the size of the pore

spaces among larger particles (dS/dL . (2/
√

3 − 1)).

Finally, preliminary results for somewhat higher and lower values of ν and p indicate a

limit for the applicability of Equation 6 even for relatively hard particles. For higher values

of p and ν, p continues to increase with little increase in Z as indicated by the dashed line

in Fig. 4 (d) possibly as the system is approaching a jammed state. For somewhat lower

values of ν, the pressure appears less sensitive to Z possibly as the system is approaching a

gaseous state, though segregation and other inhomogeneities increase at lower solids fractions

making systematic investigation of this more difficult. More work is needed to flush out

these transitions and to determine their dependencies on particle property and shear rate.

As a result of the work investigating these details, more of the physics of transitions among

different phases of granular fluids and solids may become apparent.
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