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Most bacteria swim through fluids by rotating helical flagella which can take one of twelve distinct polymor-

phic shapes, the most common of which is the “normal” form used during forward swimming runs. To shed

light on the prevalence of the normal form in locomotion, we gather all available experimental measurements of

the various polymorphic forms and compute their intrinsic hydrodynamic efficiencies. The normal helical form

is found to be the most efficient of the twelve polymorphic forms by a significant margin – a conclusion valid

for both the peritrichous and polar flagellar families, and robust to a change in the effective flagellum diameter

or length. Hence, although energetic costs of locomotion are small for bacteria, fluid mechanical forces may

have played a significant role in the evolution of the flagellum.

PACS numbers: 47.63.-b, 47.63.Gd, 87.17.Jj, 87.23.Kg

Life in all its diversity is ever changing as form meets func-

tion, intimately tuned to nature’s diverse environments. Bacte-

ria evolved to swim through fluids by rotating a single helical

flagellum (“monotrichous”, or polar, bacteria), or in the case

of such organisms as Salmonella and Escherichia coli, several

rotating helical flagella emanating from their cell membranes

(“peritrichous” bacteria). Flagella are assembled through the

polymerization of a flagellin protein, and have been met with

great interest both in and outside the scientific community

due to its astoundingly complex construction [1]. Due to

the various possible arrangements of polymerized flagellin, it

has been postulated that the flagellar filaments can take only

twelve distinct polymorphic forms [2–4], of which nine have

been characterized experimentally [5] (Fig. 1a).

The most common helical waveform is the left-handed

“normal” form, used during forward swimming “runs.” Upon

counterclockwise (CCW [when viewed from the flagellum’s

distal end]) co-rotation of the flagella by rotary motors, a flag-

ellar bundle forms behind peritrichous bacteria, driving fluid

backward and propelling the cell forward. To change swim-

ming directions these bacteria undergo “tumbling” events.

As shown in Fig. 1b-e, a quick direction reversal to clock-

wise (CW) motor rotation produces a twisting torque which

temporarily transforms the associated flagellum from a left-

handed normal form to a right-handed “semi-coiled” form,

leading to an unwinding of the bundle and a change in cell

orientation, followed by a transition to a right-handed “curly”

form which persists until the next reversal in motor direction

[6–8]. The other forms are not generally used for locomotion.

Mechanical stresses, such as the twisting and viscous

torques present during swimming, are not the only means by

which the flagellar shape might shift from one waveform to

another. Filaments can also transform reversibly in response

to amino acid replacements, chemical or temperature changes,

or the addition of alcohols or sugars [9–14]. Other authors

have considered the elastic rigidity of different polymorphs

and its relationship to shape selection [7, 15–17]. The motion

of a helical body through a viscous fluid has seen extensive

theoretical treatment [18–21].

In this letter we present a physical rationalization of the

prevalence of the normal polymorphic form in bacterial swim-

ming. We gather all available experimental measurements of

the various polymorphic flagellar waveforms [23] along with

the twelve theoretical forms [3], and compute the intrinsic hy-

drodynamic efficiency of each geometry. We show that the

normal form is the most hydrodynamically efficient of the

twelve polymorphic forms by a significant margin, a result

true for both peritrichous and monotrichous (polar) flagellar

families. This conclusion is robust as the flagellum length

is varied, or its effective diameter is increased to represent a

bundle of flagella. The hydrodynamic optimality of the nor-

mal helical form therefore suggests a role for fluid mechanical

forces in the evolution of the flagellum.

We begin with a short description of the hydrodynamics

of swimming bacteria. At the exceedingly small length and

velocity scales on which bacteria swim, viscous dissipation

overwhelms any inertial effects, and the fluid motion is ac-

curately described by the Stokes equations [24, 25]. In this
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FIG. 1. (a) All twelve theoretical peritrichous polymorphic wave-

forms, including two straight forms [3]; left-handed (resp. right-

handed) helices are denoted by filled (resp. empty) symbols. (b) One

flagellum of an E. coli cell displays a normal waveform; (c) semi-

coiled; (d) curly; (e) normal again. Adapted with permission from

Turner, L., Ryu, W.S., and Berg, H.C., J. Bacteriol., 182 2793 (2000).
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regime, there is a linear relation between the net forces and

torques on an immersed flagellum, (F,N), and its associated

translational and rotational velocities, (U, ω) (rigid body mo-

tion is assumed). Consider a rotating helix driving a cell body,

as is the case for the swimming runs of flagellated bacteria.

In this case, the net forces and torques on the rotating flagel-

lum (or flagella) must balance those of the fluid on the body.

Assuming that the cell is axisymmetric about x̂ and swims di-

rectly along this axis, we write the body’s swimming velocity

as U = U x̂ and its rotational velocity as Ω = Ω x̂. The corre-

sponding fluid force and torque on the cell body are denoted

by F = −A0U x̂ and N = −D0Ω x̂, respectively. A linear mo-

bility relation for the flagellum may then be written as

(

A B
C D

) (

U

ω

)

=

(

−A0U

−D0Ω

)

, (1)

where we have written the translational and rotational veloci-

ties of each point on the flagellum as U = U x̂ and ω = ω x̂,

and neglected hydrodynamic interactions between the flagel-

lum and the body. It can be shown that C = B [24, 26]. The

cell body counter-rotates with respect to the motion of the

flagellum, and the rotary motor at the base of the flagellum at-

tached to the cell body rotates with angular speedΩm = ω−Ω.

In order to compare the performance of the various poly-

morphic forms, a hydrodynamic efficiency E∗ is now defined

following the work of Purcell [26]. The power output of the

motor, NΩm, is compared to the least power required to move

the cell body at speed U by any means of propulsion, namely

A0 U2, and so E∗ = (A0 U2)/(NΩm). Expressions for U and N

in terms of the rotation rate Ωm may be deduced from Eq. (1),

and various approximations valid for the relative length and

velocity scales observed in swimming bacteria may be made

(for example B2 ≪ AD, and ω ≫ Ω) [26]. Allowing for a

rescaling of the propeller dimensions, for a given cell body the

maximum value of the swimming efficiency can then be found

to be given by E = B2/(4AD); E is the intrinsic propeller effi-

ciency, and is a function of its shape alone [26, 27]. Note that

the expression forE could also be reached using a dimensional

approach, asB indicates the correlation between motor torque

and forward swimming, while A and D are indicative of the

fluid friction (via Eq. 1); the ratio above (or factors thereof)

are the only such dimensionally proper arrangements.

To determine the intrinsic efficiency E for each experimen-

tally measured or theoretical waveform, we need only com-

pute the three resistance coefficientsA,B andD. To do so ac-

curately, we perform computations using a non-local slender

body theory for viscous flows [28]. We consider a single rigid

flagellar filament of length L and circular cross-section of ra-

dius ǫ L r(s), where r(s) is dimensionless, ǫ ≪ 1 is the aspect

ratio of the flagellum (ǫ . 10−2 for bacteria), and s ∈ [0, L]

is the arc-length parameter. For a given translational velocity

U x̂ and rotational velocityω x̂ about a point x0, the fluid force

f(s) on the filament is given implicitly via

8πµ[U x̂ + ω x̂ × (x(s) − x0)] = −Λ[f(s)] −K[f(s′)](s), (2)
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FIG. 2. A normal waveform undergoes pure CCW rotation about the

major helical axis x̂, with (P,D) = (2.3 µm, 0.4 µm), L = 10 µm, and

d = 20 nm. (a) Velocity vectors through a cross section at s = L/2.

A dark arrow indicates both the direction of rotation of the flagel-

lar filament, as well as the location on the filament which intersects

the cross-sectional plane. (b) The lengthwise velocity u (the fluid

velocity through the cross-sectional plane), normalized by ωD/2.

where µ is the shear viscosity of the fluid, x(s) de-

notes the centerline position at a station s, Λ[f](s) =

[c(I + ŝŝ)+2(I − ŝŝ)]f(s), K[f(s′)](s) = (I + ŝŝ)
∫ L

0

f(s′)−f(s)

|s′−s| ds′

+

∫ L

0

(

I+R̂R̂
|R(s′,s)| −

I+ŝŝ
|s′−s|

)

f(s′) ds′, c = − ln(ǫ2e), R(s′, s) = x(s′) −
x(s), R̂ = R/|R|, ŝ is the local unit tangent vector at

the point s, and ŝŝ is a dyadic product [28, 29]. Hence-

forth x0 is set at the origin. In order to obtain numeri-

cally the distribution of forces, f(s), accurately to order ǫ2,

it is required that r(s) decays no slower than O(s1/2) near

the filament endpoints, and we have chosen for simplicity

r(s) =
√

4s(L − s)/L as in Ref. [29]. The flagellum di-

ameter d at the midpoint s = L/2 is 2 ǫ L. The wave-

forms considered are modeled as perfect helices with center-

lines x(s) = P K s x̂+(D/2)
[

sin(2πKs) ŷ + cos(2πKs) ẑ
]

, with

K = 1/
√

(πD)2 + P2, P the pitch, and D the helical diameter.

We solve Eq. (2) numerically for f(s) using a Galerkin

method [31], in which f(s) is written as a finite sum of Leg-

endre polynomials, and Eq. (2) is required to hold under in-

ner products against the same basis functions. The first in-

tegral in the operator K[f] is diagonalized in this space [29].

With f(s) in hand, we define F′ = x̂ ·
∫ L

0
f(s) ds and N′ =

x̂ ·
∫ L

0
(x(s)− x0) × f(s) ds. Then, setting (U, ω) = (1, 0) we re-

coverA = F′; setting (U, ω) = (0, 1) we recover B = F′ and

D = N′. Based on the mathematical accuracy of the method,

we estimate that the numerical errors in computing the fluid

flow and efficiency calculations for a specified geometry are

below 0.1% of the reported values.

The velocity field, u(x), at a point x in the fluid

can be recovered using the representation 8πµu(x) =

−
∫ L

0

(

I+R̂R̂
|R(s′)| +

ǫ2

2
I−3R̂R̂
|R(s′)|3

)

f(s′) ds′, where now R(s′) = x − x(s′)

[29]. We show in Fig. 2a the velocity field so computed

through a cross section of a normal flagellar waveform which

is undergoing pure CCW rotation at rate ω. The flow is pri-

marily restricted to the y-z plane, rotating along with the flag-

ellum (due to the no-slip condition there), and decaying in

magnitude away from the intersection point. There is a small

lengthwise fluid motion through this plane, so that fluid is

slowly shuttled backward along the axis of rotation. This
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FIG. 3. (a) Efficiency contours in the circumference-pitch (C-P) plane (P < 0 for left-handed helices, as in diagram), assuming a flagellum

diameter (resp. length) of 20 nm (resp. 10 µm), combining the information from Fig. 3b-e. The two large circles distinguish the peritrichous

and monotrichous (polar) flagellar families, dashed for P > 0. Data points and bars indicate the mean computed efficiency ± one standard

deviation for the peritrichous (black), polar (blue), and theoretical (red, from Ref. [3]) waveforms. Dotted lines indicate the curves C = ±P.

(b) Waveform geometries from experimental data for the peritrichous flagella (see Tables S1-S4 in the supplementary material and symbols

from Fig. 1). Each color represents a different data set. (c) Hydrodynamic efficiencies for each of the peritrichous waveforms as a function

of the mean pitch angle, as in (a). Two curves indicate the efficiencies measured continuously along the large circle in the C-P plane in (a);

the dashed curve again corresponds to P > 0, and the solid curve to P < 0. (d,e) Same as in (b,c), but for the polar flagellar family [30]. The

normal form in each family is the most hydrodynamically efficient of the twelve polymorphic forms by a significant margin.

lengthwise velocity u is displayed in Fig. 2b, normalized by

ωD/2; it is zero at the flagellum boundary (due to the no-slip

condition), and increases to a maximum of u ≈ 0.2 (ωD/2)

on the circular helical perimeter approximately opposite the

point where the flagellum intersects the y-z plane.

For each of the experimentally measured waveforms re-

ported in the literature [23] and the theoretically predicted

waveforms [3], we compute the intrinsic efficiencyE using the

method described above. In each case we assume a flagellum

length L = 10 µm and diameter d = 20 nm. Figure 3a com-

piles the efficiency results, further detailed in Fig. 3b-e, over-

laid upon efficiency contours in the circumference-pitch (C-P)

plane (C = πD). Different symbols represent the various poly-

morphic forms (see Fig. 1), and experimental data show aver-

ages ± one standard deviation, with peritrichous (resp. polar)

data in black (resp. blue). As the filament becomes infinites-

imally slender Eq. (2) returns E = y2/(8y4
+ 20y2

+ 8), with

y = P/C. In this limiting case, the efficiency-maximizing ge-

ometry has C = |P| (pitch angle ψ = 45◦), indicated in Fig. 3a

by dotted lines, and E = 2.8%. However, at the biologically

relevant length scales and aspect ratio as studied here, the op-

timal geometry has C ≈ (7/8) |P| (pitch angle ψ ≈ 40◦).

We plot in Fig. 3b the geometrical data in the (C-P) plane

which allows the different members of the peritrichous flag-

ellar family to be distinguished [30]. Each color represents a

different data set [23]. The mean hydrodynamic efficiencies

(± one standard deviation) of flagellar polymorphs in the per-

itrichous family are shown in Fig. 3c as a function of the aver-

age helical pitch angle, 〈ψ〉, for measured (black) and theoret-

ically predicted (red) waveforms; the numerical values of the

efficiencies for each waveform are noted in the supplementary

material. The normal waveform is found to be the most hy-

drodynamically efficient of the twelve helical forms by a sig-

nificant margin (with 〈E〉 = 0.96%) over 23% more efficient

than the next most efficient forms, the curly and semi-coiled

waveforms (which are both used by bacteria during change-

of-orientation events [6–8]). Two curves indicate the efficien-

cies measured along the large circle in the C-P plane in (a); the

larger efficiencies are achieved along this circle when P < 0.

The leftward skew of the theoretical C-P relationship is thus

seen to play an important role in the left-handed normal form

being more efficient than its right-handed counterparts.

A different flagellar family can be distinguished by examin-

ing the circumference-pitch curve for different measurements,

and is shown in Fig. 3d. These are monotrichous (polar) flag-

ella, assembled from a different flagellin protein than peritri-

chous flagella, but which follow a similar polymorphic se-

quence of twelve forms [30]. Similarly to the peritrichous

family, the normal form is the most hydrodynamically effi-

cient one (with 〈E〉 = 1.03%; Fig. 3e), a 25% increase over

the next most efficient shape, a right-handed curly waveform.

To address the robustness of our results against geometri-

cal variations, we changed both the flagellum diameter and

length in our computations. We show in Fig. 4a the mean

efficiency computed for the peritrichous waveforms as a func-

tion of the flagellum diameter, as a model for the increased
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FIG. 4. (a) Change in efficiency for the peritrichous family by vary-

ing the flagellar diameter from d = 20 nm to 40 nm. Greater

percentage-wise gains in efficiency is obtained for thicker propellers.

(b) Varying the flagellar length L. The efficiency ordering remains

nearly the same through the biologically relevant length scales. (c)

The mean efficiencies of the normal, coiled, semi-coiled, curly, and

curly II waveforms as functions of the mean pitch angle for three

different lengths. (d) Same as (b), but for the polar flagellar family.

effective filament size of flagellar bundles. The efficiency de-

creases steadily as the filament size increases, but the effi-

ciency of each polymorph decays at a similar rate, and thus the

efficiency ordering from Fig. 3c is unchanged. The greatest

percentage benefit in efficiency when using the normal form is

found when the flagellar diameter is large, e.g. for bundles of

many flagella. Varying the flagellar length also shows that the

efficiency ordering is not modified, as shown in Figs. 4b-c, and

the greatest percentage increase in the efficiency of the normal

form is achieved for longer filaments. We also changed the

lengths used in the computations for the polar flagellar family,

with the results shown in Fig. 4d, again showing no change in

order. For both peritrichous and polar flagellar families, the

efficiency orderings shown in Figs. 3c-e are therefore robust

throughout the biologically relevant parameter space.

Finally, we find that less accurate resistive force theories,

which locally relate body velocities to fluid forces, and are the

most widely used approaches for modeling slender bodies in

fluids, do not predict the efficiency ordering found using the

full non-local hydrodynamics (see also Refs. [20, 32]) [23].

Hydrodynamic interactions between different parts of the he-

lical propeller are thus essential in order to conclude on the

relative efficiencies of flagellar polymorphs.

In conclusion, by examining all available experimental data

on the geometry of bacterial flagella we have found that both

peritrichous and polar bacteria employ, among the discrete

number of available flagellar shapes, the hydrodynamically

optimal polymorph in order to swim in viscous fluids. In con-

trast to simple estimates showing that locomotion accounts for

a negligible portion of a bacterium’s metabolic costs [33], our

results suggest that fluid mechanical forces may have played

a significant role in the evolution of the flagellum.
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