
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Predicting Criticality and Dynamic Range in Complex
Networks: Effects of Topology

Daniel B. Larremore, Woodrow L. Shew, and Juan G. Restrepo
Phys. Rev. Lett. 106, 058101 — Published 31 January 2011

DOI: 10.1103/PhysRevLett.106.058101

http://dx.doi.org/10.1103/PhysRevLett.106.058101


LU13130

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Predicting criticality and dynamic range in complex networks: effects of topology

Daniel B. Larremore,1, ∗ Woodrow L. Shew,2 and Juan G. Restrepo1

1Department of Applied Mathematics, University of Colorado, Boulder, CO 80309, USA
2National Institutes of Health, National Institute of Mental Health, Bethesda, MD 20892, USA

The collective dynamics of a network of coupled excitable systems in response to an external stimulus de-

pends on the topology of the connections in the network. Here we develop a general theoretical approach to

study the effects of network topology on dynamic range, which quantifies the range of stimulus intensities result-

ing in distinguishable network responses. We find that the largest eigenvalue of the weighted network adjacency

matrix governs the network dynamic range. Specifically, a largest eigenvalue equal to one corresponds to a crit-

ical regime with maximum dynamic range. We gain deeper insight on the effects of network topology using a

nonlinear analysis in terms of additional spectral properties of the adjacency matrix. We find that homogeneous

networks can reach a higher dynamic range than those with heterogeneous topology. Our analysis, confirmed by

numerical simulations, generalizes previous studies in terms of the largest eigenvalue of the adjacency matrix.

PACS numbers: ??

Numerous natural [1, 2] and social [3] systems are accu-

rately described as networks of interacting excitable nodes.

The collective dynamics of such excitable networks often defy

naive expectations based on the dynamics of the single nodes

which comprise the network. For example, the collective re-

sponse of a neural network can encode sensory stimuli which

span more than 10 orders of magnitude in intensity, while

the response of a single neuron (node) typically encodes a

much smaller range of stimulus intensities. More generally,

the range of stimuli over which a network’s response varies

significantly is quantified by dynamic range and is a funda-

mental property, whether the network is comprised of people,

cell phones, genes, or neurons. In neural networks, recent ex-

periments [4] suggest that dynamic range is maximized in a

critical regime in which neuronal avalanches [5] occur, con-

firming earlier theoretical predictions [2]. It has been argued

[2, 4] that this critical regime occurs when the effective mean

degree of the network is one, i.e. the expected number of ex-

cited nodes produced by one excited node is one. However,

this criterion is invalid for networks with broad degree distri-

butions [6, 7]. A general understanding of how dynamic range

and criticality depend on network structure remains lacking.

In this Letter, we present a unified theoretical treatment of

stimulus-response relationships in excitable networks, which

holds for diverse networks including those with random, scale

free, degree-correlated, and assortative topologies.

As a tractable model of an excitable network, here we con-

sider the Kinouchi-Copelli model [2], which consists of N
coupled excitable nodes. Each node i can be in one of m
states xi. The state xi = 0 is the resting state, xi = 1 is

the excited state, and there may be additional refractory states

xi = 2, 3, ..., m − 1. At discrete times t = 0, 1, ... the states

of the nodes xt
i are updated as follows: (i) If node i is in the

resting state, xt
i = 0, it can be excited by another excited node

j, xt
j = 1, with probability Aij , or independently by an ex-

ternal process with probability η. The network topology and

strength of interactions between the nodes is described by the

connectivity matrix A = {Aij}. In this model, η is considered

the stimulus strength. (ii) The nodes that are excited or in a re-

fractory state, xt
i ≥ 1, will deterministically make a transition

to the next refractory state if one is available, or otherwise re-

turn to the resting state (i.e. xt+1

i = xt
i +1 if 1 ≤ xt

i < m−1,

and xt+1

i = 0 if xt
i = m − 1).

An important property of excitable networks is the dynamic

range, which is defined as the range of stimuli that is distin-

guishable based on the system’s response F . Following [2],

we quantify the network response with the average activity

F = 〈f〉t where 〈·〉t denotes an average over time and f t is

the fraction of excited nodes at time t. To calculate a system’s

dynamic range, we first determine a lower stimulus threshold

ηlow below which the change in the response is negligible, and

an upper stimulus threshold ηhigh above which the response

saturates. Dynamic range (∆), measured in decibels, is de-

fined as ∆ = 10 log10 ηhigh/ηlow. To analyze the dynamics

of this system, we denote the probability that a given node i is

excited at time t by pt
i. For simplicity, we will consider from

now on only two states, resting and excited (m=2) [8]. Then,

the update equation for pt
i is

pt+1

i = (1−pt
i)



η + (1 − η)



1 −

N
∏

j

(1 − pt
jAij)







 (1)

which can be obtained by noting that 1 − pt
i is the probability

that node i is resting at time t, and the term in large paren-

theses is the probability that it makes a transition to the ex-

cited state. We note that, in writing this probability, we treat

the events of neighbors of node i being excited at time t as

statistically independent. As noted before [3, 9–11], this ap-

proximation yields good results even when the network has a

non-negligible amount of short loops.

In Ref. [2], the response F was theoretically analyzed as

a function of the external stimulation probability η using a

mean-field approximation in which connection strengths were

considered uniform, Aij = σ/N for all i, j. It was shown that

at the critical value σ = 1, the network response F changes

its qualitative behavior. In particular, lim
η→0

F = 0 if σ < 1

and lim
η→0

F > 0 if σ > 1. In addition, the dynamic range of

the network was found to be maximized at σ = 1. The pa-
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rameter σ is defined in Refs. [2, 4] as an average branching

ratio, written here as σ = 1

N

∑

i,j Aij = 〈din〉 = 〈dout〉,

where din
i =

∑

j Aij and dout
i =

∑

j Aji are the in- and

out-degrees of node i, respectively, and 〈·〉 is an average over

nodes. For the network topology studied by Ref. [2] σ = 1
marks the critical regime in which the expected number of

excited nodes is equal in consecutive timesteps. Such criti-

cal branching processes result in avalanches of excitation with

power-law distributed sizes. Cascades of neural activity with

such power-law size distributions have been observed in brain

tissue cultures [4], awake monkeys [12], and anesthetized rats

[13]. While σ = 1 successfully predicts the critical regime

for Erdős-Rényi random networks [2], this prediction fails

in networks with a more heterogeneous degree distribution

[6, 7]. Perhaps more importantly, previous theoretical anal-

yses [2, 6, 7] do not account for features that are commonly

found in real networks, such as community structure, correla-

tion between in- and out-degree of a given node, or correlation

between the degree of two nodes at the ends of a given edge

[14]. Here, we will generalize the mean-field criterion σ = 1
to account for complex network topologies.

To begin, we note that lim
η→0

F = 0 corresponds to the

fixed point ~p = 0 of Eq. (1) with η = 0. To examine the

linear stability of this fixed point, we set η = 0 and lin-

earize around pt
i = 0, assuming pt

i to be small, obtaining

pt+1

i =
∑N

j pt
jAij . Assuming pt

i = uiλ
t yields

λui =

N
∑

j

ujAij . (2)

Thus, the stability of the solution ~p = 0 is governed by the

largest eigenvalue of the network adjacency matrix, λ, with

λ < 1 being stable and λ > 1 being unstable. Therefore,

the critical state described in previous literature, occurring at

various values of 〈d〉, should universally occur at λ = 1. Im-

portantly, since Aij ≥ 0, the Perron-Frobenius theorem guar-

antees that λ is real and positive [15]. Other previous studies

in random networks have also investigated spectral properties

of A to gain insight on the stability of dynamics in neural net-

works [16] and have shown how λ could be changed by modi-

fying the distribution of synapse strengths [17]. An important

implication of Eq. (2) is that, when p and η are small enough,

p should be almost proportional to the right eigenvector u cor-

responding to λ, so we write pi = Cui + ǫi, where C is a

proportionality constant and the ǫi error term captures the de-

viation of actual system behavior from the linear analysis. To

first order, the constant C is related to the network response F
since, neglecting ǫ, we have

F = 〈f〉t =
1

N

∑

i

pi ≈
1

N

∑

i

Cui = C〈u〉. (3)

The linear analysis allowed us to identify λ = 1 as the point

at which the network response becomes non-zero as η → 0.

In what follows, we use a weakly nonlinear analysis to obtain

approximations to the response F (η) when η is small. As we

will show, these approximations depend only on a few spec-

tral properties of A. Assuming Aijpj ≪ 1 (which is valid

near the critical regime if each node has many incoming con-

nections), we approximate the product term of Eq. (1) with an

exponential, obtaining in steady state

pi = (1 − pi)



η + (1 − η)



1 − exp



−
∑

j

pjAij













(4)

which we expand to second order using Eq. (3) and Au = λu,

Cui+ǫi = (Aǫ)i+η(1−Cui)+(1−η)λCui−

(

λ +
1

2
λ2

)

C2u2
i .

(5)

To eliminate the error term ǫi from Eq. (5), we multiply by vi,

the ith entry of the left eigenvector corresponding to λ, and

sum over i. We use the fact that vT Aǫ = λvT ǫ, where vT de-

notes the transpose of v, and neglect the resulting small term

(1 − λ)
∑

i viǫi close to the critical value λ = 1, obtaining

C〈uv〉 = η(〈v〉−C〈uv〉)+(1−η)Cλ〈uv〉−

(

λ +
1

2
λ2

)

C2〈vu2〉.

(6)

This equation is quadratic in C [and therefore in F , via

Eq. (3)] and linear in η, and may be easily solved for either.

For η = 0 the nonzero solution for F is

Fη=0 =
(λ − 1)

(λ + 1

2
λ2)

〈uv〉〈u〉

〈u2v〉
. (7)

A more refined approximation than Eq. (6) can be obtained by

repeating this process without expanding Eq. (4), which yields

the linear equation for η

C〈uv〉 =
∑

i

(1−Cui)(η +(1−η)[1− exp(−λCui)]). (8)

Before numerically testing our theory, we will explain how

it relates to previous results. For a network with correlations

between degrees at the ends of a randomly chosen edge (assor-

tative mixing by degree [14]), measured by the correlation co-

efficient ρ = 〈din
i dout

j 〉e/〈d
indout〉, with 〈·〉e denoting an av-

erage over edges, the largest eigenvalue may be approximated

by λ ≈ ρ〈dindout〉/〈d〉 [20]. In the absence of assortativity,

when ρ = 1, λ ≈ 〈dindout〉/〈d〉. If, in addition, there are no

correlations between din and dout (node degree correlations)

or if the degree distribution is sufficiently homogenous, then

〈dindout〉 ≈ 〈d〉2 and the approximation reduces to λ ≈ 〈d〉.
In the case of Ref. [2], λ ≈ 〈d〉 applies, and in the case of

Refs. [6, 7], λ ≈ 〈dindout〉/〈d〉 applies.

We test our theoretical results via direct simulation of the

Kinouchi-Copelli model on six categories of directed net-

works with N = 10, 000 nodes: (category 1) Random net-

works with no node degree correlation between din and dout;

(category 2) Random networks with maximal degree correla-

tion, din = dout; (category 3) Random networks with moder-

ate correlation between din and dout; (category 4) Networks

with power law degree distribution with power law exponents

γ ∈ [2.0, 6.0], with and without node degree correlations;

(category 5) Networks constructed with 〈d〉 = 1, and assorta-

tivity coefficient ρ varying in [0.7, 1.3]; (category 6) Networks

with weights which depend on the degree of the node from
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which the edge originates, Aij = α/dout
i .

We created networks in multiple steps: first, we created

binary networks (Aij ∈ {0, 1}) with target degree distribu-

tions as described below; next, we assigned a weight to each

link, drawn from a uniform distribution between 0 and 1; fi-

nally, we calculated λ for the resulting network and multi-

plied A by a constant to rescale the largest eigenvalue to the

targeted eigenvalue. This process was restarted from the first

step for every network used in categories 1-4, creating a struc-

turally different network for each simulation. The initial bi-

nary networks in categories 1-3 were Erdős-Rényi random

networks, constructed by linking any pair of nodes with prob-

ability p = 10/N [18]. Maximal degree correlation resulted

from creating undirected binary networks and then forcing

Aij = Aji for i < j while assigning weights. Moderate de-

gree correlation resulted from making undirected binary net-

works but allowing Aij 6= Aji when weights were assigned.

The algorithms for constructing the initial binary networks

of categories 4-6 placed links randomly between nodes with

specified in- and out-degrees via the configuration model [19].

For this model, we generated in- and out-degree sequences

from a power law distribution of desired exponent γ by calcu-

lating the expected integer number of nodes with each integer

degree, from minimum degree 10 to maximum degree 200. In

creating category 5 networks, we initially created one scale

free network with power law exponent γ = 2.5 and λ = 1.

Then, to change the degree of assortativity, we modified this

original network by choosing two links at random and swap-

ping them if the resulting swap would change the assortativity

in the direction desired. This process was repeated until a

desired value of ρ was achieved. Importantly, this swapping

makes it possible to leave the degree distributions of the net-

work unchanged, while still changing the assortative or disas-

sortative properties of the network as in [14, 20]. Therefore,

by this method we may maintain exactly the same degree dis-

tribution and mean degree, yet modify λ by virtue of λ ∝ ρ.

In the six network types tested, results of simulations unan-

imously confirm the hypothesis that criticality occurs only for

largest eigenvalue λ = 1. We present representative results

in Fig. 1 (a), noting that each line and set of points corre-

sponds to a single network realization, implying that the effect

of the largest eigenvalue on criticality is robust for individual

systems. Fig. 1 (a) shows the response F as a function of

stimulus η for scale-free networks with exponent γ = 2.5,

constructed with no correlation between in- and out-degree,

highlighting the significant difference between the regimes of

λ < 1 and λ > 1, with the critical data corresponding to

λ = 1. The lines were obtained by using Eqs. (3) and (8).

Fig. 1 (b) shows ∆ as a function of λ, using ηhigh = 1 and

ηlow = 0.01, with the maximum occurring at λ = 1. Sim-

ilar results showing criticality and maximum dynamic range

at λ = 1 are obtained for networks of all categories 1-5. Fig.

2 shows Fη→0 for networks of categories 3-5, confirming the

transition predicted by the leading order analysis in Eq. (2).

The symbols show the result of direct numerical simulation

of the Kinouchi-Copelli model, the solid lines were obtained
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FIG. 1: (color online) (a) Response F vs. stimulus η for power law

networks with exponent γ = 2.5 and no correlation between din and

dout. Eq. (8) (lines) captures much of the behavior of the simulation

(circles), particularly for low levels of η and F , as expected from

approximating Eq. (1). (b) Dynamic range ∆ is maximized at λ = 1

in both simulation results (circles) and Eq. (6) (line).

by iterating Eq. (1), and the dashed lines were obtained from

Eq. (7). Fig. 2(a) shows that criticality occurs at λ = 1 (indi-

cated by a vertical arrow) rather than at 〈d〉 = 1 for a category

3 random network. Fig. 2(b) shows that criticality occurs at

λ = 1 for scale-free networks (category 4). Correlations be-

tween din and dout affect the point at which λ = 1 occurs

(vertical arrows). In Fig. 2(c), the mean degree was fixed at

〈d〉 = 1, while λ was changed by modifying the assortative

coefficient ρ. As predicted by the theory, there is a transition

at λ = 1 even though the mean degree is fixed.

We now explore the question of what network topology will

best enhance dynamic range. In many of the systems we sim-

ulate, a majority of the variation in dynamic range from one

stimulus-response curve to another occurs due to variation

at the low stimulus end of the curve, since most of the sys-

tems tend to saturate at around the same high stimulus levels

(though this may not be the case for neuronal network exper-

iments [4]). We therefore consider the following approximate

measure of dynamic range, Λ, obtained by setting ηhigh to

one in the definition of ∆, Λ = 10 log10 1/η∗, where η∗ is the

stimulus value corresponding to a lower threshold response

F∗. Since dynamic range is maximized at criticality, we set

λ = 1, solve Eq. (6) for η∗, substitute it into the definition of

Λ using Eq. (3), retaining the leading order behavior to get

ΛMAX = 10 log10

2

3F 2
∗

− 10 log10

〈vu2〉

〈v〉〈u〉2
. (9)

The first term of this equation shows that ΛMAX depends

on F∗. Since the entries of the right (left) dominant eigen-
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FIG. 2: (color online) Fη→0 obtained from direct numerical simulation of the Kinouchi-Copelli model (symbols) plotted against 〈d〉 (a, b) and

λ (c). Blue solid lines result from iterating Eq. (1) and green dashed lines result from Eq. (7). Small arrows show where λ = 1 predicts a

phase transition. (a) A set of random networks (category 3) showing that criticality occurs at λ = 1 (arrow), but not 〈d〉 = 1. (b) Criticality

in scale free networks (category 4) with node degree correlation also occurs at λ = 1 (arrow), but not 〈d〉 = 1. (c) Category 5 networks are

tuned through criticality by changing assortativity, without changing the degree distributions and fixed 〈d〉 = 1.

vector are a first order approximation to the in-degree (out-

degree) of the corresponding nodes [21], the second term

suggests that maximum dynamic range should increase (de-

crease) as the degree distribution becomes more homogenous

(heterogeneous). For example, consider the case of an undi-

rected, uncorrelated network, in which vi = ui ≈ di. The sec-

ond term is then approximately−10 log10 (〈d3〉/〈d〉3), which

is maximized when di is independent of i. This corroborates

the numerical findings in Refs. [2, 7] that random graphs

enhance dynamic range more than more heterogeneous scale

free graphs, and that the heterogeneity of the degree distribu-

tion affects dynamic range [7]. To test our result, we simu-

late scale free networks with different power law exponents

γ ∈ [2.0, 6.0], yet with λ = 1 to maximize dynamic range in

each case. Results of simulation (circles) plotted against the

prediction of Eq. (9) (line) are shown in Fig. 3.

In summary, we analytically predict and numerically con-

firm that criticality and peak dynamic range occur in networks

with largest eigenvalue λ = 1. This result holds for diverse

network topologies including random, scale-free, assortative,

and/or degree-correlated networks, and for networks in which

edge weights are related to nodal degree, thus generalizing

previous work. Moreover, we find that homogeneous (het-

erogeneous) network topologies result in higher (lower) dy-

namic range. Previous demonstrations of how λ governs net-

work dynamics in many other models (see [21] and references
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FIG. 3: For power-law degree distributions with λ = 1, peak dy-

namic range increases monotonically with network homogeneity, as

measured by power law exponent γ. Simulations (circles) agree well

with our predictions [Eq. (9); line].

therein) suggest that the generality of our findings may extend

beyond the particular model studied here. Previous model

studies have shown that mutual information between stimulus

and response is also maximized at criticality [5]. Our findings

suggest that peak mutual information will also be determined

by λ = 1, but verifying this will require additional investi-

gation. Taken together with related experimental findings [4],

our results are consistent with the hypotheses that 1) real brain

networks operate with λ ≈ 1, and 2) if an organism benefits

from large dynamic range, then evolutionary pressures may

act to homogenize the network topology of the brain.
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