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Several experimental candidates for quantum spin liquids have been discovered in the past few
years which appear to support gapless fermionic S = 1

2
excitations called spinons. The spinons may

form a Fermi sea coupled to a U(1) gauge field, and may undergo a pairing instability. We show that
despite being charge neutral, the spinons couple to phonons in exactly the same way that electrons
do in the long wavelength limit. Therefore we can use sound attenuation to measure the spinon
mass and lifetime. Furthermore, transverse ultrasonic attenuation is a direct probe of the onset of
pairing because the Meissner effect of the gauge field causes a “rapid fall” of the attenuation at Tc

in addition to the reduction due to the opening of the energy gap. This phenomenon, well known
in clean superconductors, may reveal the existence of the U(1) gauge field.

PACS numbers: 71.27.+a,75.10.Jm,71.10.-w,74.70.Kn

Quantum spin liquid in dimensions greater than one
is a long sought state of matter which has eluded ex-
perimental investigation until recently.[1] We define the
quantum spin liquid as an insulator with an odd number
of electrons per unit cell which does not order magnet-
ically down to zero temperature due to quantum fluc-
tuations. The theory of quantum spin liquid is rather
well developed, and it is expected that if such a state
exists, it will have various exotic properties. For exam-
ple, the low energy excitations may be objects which may
carry spin 1

2 and no charge, called spinons. The spinons
may be gapped or gapless and may obey either boson or
fermion statistics. They will be accompanied by gauge
fields, which may be of the U(1) or Z2 variety. In the past
few years, several candidates for the quantum spin liq-
uid have emerged. The best studied example is a family
of organic compounds. The original κ−(ET)2Cu2(CN)3
salt (abbreviated as ET) [2] has recently been joined by
a second material,[3] the Pd(dmit)2(EtMe3Sb) which we
shall refer to as dmit. Both materials are Mott insula-
tors on an approximate triangular lattice with spin 1

2 per
unit cell, but are not far from the Mott transition be-
cause they become superconductor (ET) or metal (dmit)
under modest pressure. There is no sign of magnetic or-
dering down to 30 mK despite an exchange interaction
J ≈ 250 K. Both materials show a linear T coefficient of
the specific heat at low temperatures, and a finite spin
susceptibility.[4] The Wilson ratio is close to one, usually
associated with metals and is highly unusual for an in-
sulator. The thermal conductivity κ is a good probe of
these low lying excitations. Experiments on the ET salts
indeed found a large contribution, but κ/T is reduced
below 0.3 K.[5] On the other hand, recent experiments
on dmit found that κ/T extrapolates to a constant down
to the lowest temperature.[6] These data strongly sup-
port the picture that the low lying excitations are mobile
fermionic particles, called spinons.

Initial theoretical work pointed to a state where
spinons form a Fermi surface and are coupled to U(1)
gauge fields.[7, 8] However, a peak in the specific heat
around 6 K in ET and 4 K in dmit suggests a phase
transition, which in the case of ET, has been confirmed
by thermal expansion measurements.[9] Furthermore, the
nuclear spin relaxation rate 1/T1T shows a power law
decrease below 1 K.[10] These data led to the sugges-
tion that the Fermi surface may be unstable to a pair-
ing instability which nevertheless leaves a finite density
of states intrinsically or due to impurities.[11] Thus the
true ground state in the organic salts remains unknown
at present.

Two other examples, the Kagome compound
ZnCu3(OH)6Cl2 and the three dimensional hyper-
Kagome Na4Ir3O8 also satisfy the condition of being
spin liquids in that they do not show magnetic order and
both are characterized by gapless excitations.[12, 13]
However, less detailed data are available and we shall
focus our attention on the organics, even though the
conceptual question we raise below will apply equally
to these materials if fermionic spinons are found to
be present. Spinons with Dirac spectra, however, may
require a different treatment.

In this paper we address two questions. First, how do
the spinons couple to phonons, and, secondly, is there a
way to unambiguously identify the pairing transition of
spinons? As we shall see, the two questions are related
because the attenuation of transverse sound turns out
to be sensitive to the gauge magnetic field fluctuations
and is a sensitive probe of the Meissner effect of gauge
magnetic field at the onset of any pairing instability.

The coupling of electrons to phonons is often discussed
in terms of the screened Coulomb coupling between elec-
trons and nuclei and one may have the impression that
the charge neutral spinon may couple differently. It turns
out that in the long wavelength limit, the coupling ma-
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trix elements are exactly the same. This is because in
this limit the coupling can be viewed as a distortion of
the Fermi surface by the local stress of the unit cell and
is the same whether the fermions are charged or not. Re-
cently the spin phonon coupling was discussed in terms of
interactions mediated by gauge fields with the conclusion
that the coupling is comparable to the electron phonon
coupling.[14] The present approach makes it clear that for
a spinon Fermi surface, the result does not rely on gauge
fields in the long wavelength limit. We next consider the
relaxation of ultrasound due to spinons in parallel with
the standard treatment of electron relaxation, including
the onset of superconductivity. Differences and similari-
ties will be pointed out.

We begin with a derivation of the spinon phonon cou-
pling following Blount’s discussion of the electron phonon
problem which was also used in Tsuneto’s theory of ul-
trasound attenuation.[15, 16] Blount’s key insight is to
transform to a frame moving with the lattice distortion.
In a slight departure from Blount, we assume that the
kinetic energy of the spinon is described by a mean field
band E0(k). E0(k) can be a nearest neighbor tight bind-
ing band, for instance. The unperturbed Hamiltonian
is

H0 = E0(p) + Vimp(r
′), (1)

where p = −i ∂
∂r

is the momentum operator, Vimp de-
scribes disorder scattering which relaxes the spinon dis-
tribution to the lattice, and r′ refers to the laboratory
frame. The sound wave is described by δR(r′, t) which
is a smoothly varying function of r′ such that it equals
the displacement of the ions at the lattice points. The
transformation to the moving frame r = r′ + δR(r′, t)
is accomplished by a canonical transformation U = eiS

where S = 1
2 (p · δR + δR ·p). The transformed Hamilto-

nian is

H0(r) + H1(r) = UH0(r
′)U−1 + i

∂U

∂t
U−1 (2)

where H0(r) is the same as Eq.(1) with r′ replaced by r,
and keeping only first order in δR,

H1 = i[S, E0(p)] +
i

2

∑

α

{

∇α,
∂δRα

∂t

}

(3)

Next we write δR ∼ ei(q·r−ωt) where ω = vsq and vs

is the sound velocity. We assume a slowly varying dis-
placement, and compute the first term in Eq.(3) to lowest
order ∇δR and ∂δR

∂t . We find

H1 =
∑

αβ

∂δRβ

∂rα
pβvα + ip ·

∂δR

∂t
(4)

where vα(p) = dE0/dpα is the electron velocity. Equa-
tion (4) is derived by formally expanding E0(p) in power
of p. The second term in Eq.(4) is of order ωkF which is

smaller than the first term by the ratio ωkF /(qkF vF ) =
vs/vF and can be dropped.

Now we introduce the phonons

Hph =
∑

q,λ,σ

ωqλa†
qλaqλ (5)

where λ denotes the phonon branches with polarization
ε̂qλ. Expanding δR in terms of the phonon coordinate
and substituting in (4) results in the spinon-phonon cou-
pling term

Hs−ph =
∑

k,q,λ,σ

Mkλ(q)f †
k+qσfkσ(aqλ + a†

−qλ), (6)

Mkλ(q) = (k · ε̂qλ)[q · v(k)](2ρionωqλ)−1/2 (7)

where ρion is the ion mass density. The spinons are cou-
pled to a gauge field a which initially has no dynam-
ics because it was introduced to enforce the the con-
straint of no double occupation. We shall approximate
E0(k) = k2/2m and the spinon kinetic energy is

H0s =
∑

k,σ

1

2m
(k + a)2f †

kσfkσ. (8)

In addition we have the impurity scattering term Himp =
∑

iσ vimp(ri)f
†
σ(ri)fσ(ri) and we consider non spin flip

scattering only. We assume that impurity scattering
gives an elastic scattering lifetime τ and mean free path
l = vF τ for the spinons.

From this point on we can discuss the sound attenua-
tion in spin liquids in parallel with the theory for met-
als and superconductors. Historically the first discussion
was in the hydrodynamic regime valid for ql ≪ 1.[17, 18]
The fermions are treated as a viscous medium subject to
strain fields set up by the sound waves. This picture is
clearly independent of the charge of the fermions and can
directly carry over to the spinon case. Starting from the
linearized Navier-Stokes equation, the sound wave relax-
ation time τs is

τL
s =

1

ρionv2
s

(

4

3
η + χ

)

, τT
s =

1

ρionv2
s

η (9)

for the longitudinal and transverse sound, respectively,
where η, χ are the shear and compressional viscosities.
The sound attenuation constant α defined as the inverse
of the phonon mean free path lph is the imaginary part

of k = (ω/vs)(1 + iωτs)
−1/2 and given by α = ω2τs

2vs

in
the limit ωτs ≪ 1. The fermion viscosity is given by
η = 1

15N(0)m2v4
F τ where N(0) is the density of states at

the Fermi level and we can take χ to be ≪ η.

The hydrodynamic theory was extended by Pippard to
all values of ql using a Boltzmann equation approach.[19]



3

Pippard pointed out that when ql >
∼ 1, the electrons de-

velop local charge and current fluctuations for the longi-
tudinal and transverse phonons which contribute signifi-
cantly to the sound attenuation. Here we re-derive Pip-
pard’s results using a diagrammatic method, because it
can readily be extended to the pairing case. Our method
is simpler than the work of Tsuneto, who combined a dia-
grammatic and Boltzmann approach. Since the diagram-
matic treatment is not readily available in the literature,
we provide the details in the supplementary material.
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FIG. 1: Feynman diagrams for phonon self energy.

Let us first re-derive the results for metals. We com-
pute the phonon self energy Π(q, ω) due to the excita-
tion of fermion particle-hole pairs. It is given by the
diagrams shown in Fig.1. The bold solid line is the
fermion Green’s function with self energy due to im-
purity scattering, Gret(adv)(k, ω) = (ω − ξk ± i/2τ)−1

where ξk = k2/2m − µ. The electromagnetic (EM)
field propagation is screened by repeated bubbles rep-
resenting density or current fluctuations for longitudi-
nal and transverse sound respectively. For longitudi-
nal sound the Thomas Fermi screening length k−1

TF is
much shorter than q−1 and it can be shown (see supp.)
that the effect of screening is the same as calculating
the unscreened bubble [Fig.1(a)] with a coupling ma-
trix M̃kλ given by Eq.(7) with the trace subtracted, i.e.,
M̃kλ(q) = [(k · ε̂qλ)(k · q) − 1

3k2(q · ε̂qλ)]/m
√

2ρionωqλ.
This is the form suggested by Blount.[15] The standard
results are reproduced, and the attenuation decreases in
the superconducting state when the quasiparticles are
gapped. In the rest of the paper we focus on the trans-
verse sound. Here there is no vertex correction (impu-
rity line across the bubbles) because the vertex given by
Eq.(7) is odd in the k component along q. Π(0) describes
the dissipation due to the creation of particle-hole exci-
tation of fermions. In Π(1) the particle-hole excitation
creates current j which couples to the electromagnetic
gauge field via j · A. The gauge field acquires a self en-
ergy by coupling to current fluctuations, as shown in the
third line in Fig.1. The resulting retarded photon prop-
agator (double wavy line) is given by

DEM
ret =

1

iωσ⊥(q, ω) + ω2 − c2q2
(10)

and c is the speed of light. For ultrasound ω2 in Eq.(10)
can safely be ignored. Following Pippard’s notation we
write σ⊥(q, ω) = gσ0 where σ0 = e2nτ/m is the DC
conductivity, and

g =
3

2a
Re[s2(a) − s0(a)], sn(a) =

1

2i

∫ 1

−1

du
un

u + i/a
,

where a = ql/(1+iωτ). We can safely assume ωτ ≪ 1 for
the rest of the paper and set a = ql. Then g → 1− 2

15 (ql)2

when ql ≪ 1 and g →
3π
4 (ql)−1 when ql ≫ 1. We see

that in the clean limit (ql ≫ 1) the first term in the
denominator of Eq.(10) is nothing but Landau damping
N(0)ω/vF q while in the opposite limit (ql ≪ 1) it gives
rise to the classical skin depth k−1

0 where k2
0 = ωσ0/c2.

The diagrams are evaluated to give (see supp.)

ImΠ
(0)
ret =

ωN(0)k3
F

4ρionmv2
s

s1(ql) − s3(ql)

iql
. (11)

On the other hand, Π
(1)
ret is proportional to the photon

propagator, and depends on the relative size of the in-
verse skin depth k0, q and l−1. Let us consider the
case when c2q2 ≪ ωσ⊥(q, ω), in which case DEM

ret =

(iωσ⊥(q, ω))−1. This holds under the condition q ≪ k0 if
ql ≪ 1 and q2 ≪ k2

0/(ql) if ql ≫ 1. (We shall not discus
the extreme clean case, q2 ≫ k2

0/ql while q ≪ k0, [19]
because it is never attained for the spinon case.) We can

show that Π
(1)
net takes the remarkably simple form

Π
(1)
ret =

1 − g

g
ImΠ

(0)
ret + O(vs/vF ). (12)

The ultrasound attenuation coefficient is given by

α = −
2

vs
Im(Π

(0)
ret + Π

(1)
ret) =

nm

ρionvsτ

1 − g

g
(13)

where the identity s1 − s3 = −
2i
3 (1 − g) + O(vs/vF ) has

been used, and n is the fermion density. Equations (13)
agree with Pippard’s result derived using Boltzmann’s
equation. Using the limit g = 1 −

2
15 (ql)2 for ql ≪ 1, we

can verify that the hydrodynamic limit is reproduced.
Now consider the onset of superconductivity. Π(0) de-

creases below Tc due to the opening of the energy gap
(see supp.), but Π(1) is affected much more dramati-
cally. Physically the onset of Meissner effect suppresses
the magnetic field fluctuations and Π(1) drops to zero
rapidly below Tc. Mathematically this is because a con-
stant term e2ns(T )/m where ns is the superfluid density
is added to the denominator of Eq.(10) and quickly dom-
inates iωσ⊥(q, ω). Since Π(1) is proportional to DEM

ret ,
it drops rapidly to very small value. This is called the
“rapid fall” and occurs over a millikelvin scale [20] in
clean samples. We note from Eq.(12) that the fractional
size of the drop is (1− g) which is very small (∼ 2

15 (ql)2)
for ql ≪ 1 but almost unity (1 −

3π
4ql ) in the clean limit

of ql ≫ 1.
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Next we turn our attention to the attenuation of trans-
verse sound by spinons. The main difference is that the
spinons and gauge fields are treated in 2D. Furthermore,
the Maxwell term ω2−c2q2 is missing in the photon prop-
agator. The dynamics of the gauge field is generated by
spinon current fluctuation and instead of Eq.(10) we have

DT
ret =

1

iωσ̃⊥(q, ω) − χq2
(14)

where σ̃⊥ = g̃σ̃0, σ̃0 = nτ/m, n is the spinon density and
χ = 1/(24πm) is the Landau diamagnetism.[21] Note
that according to Eq.(8) the coupling constant to the
gauge field has been set to unity instead of e. The factor
g̃ is calculated in 2D and is given by

g̃ =
2

a
[t2(a) − t0(a)], tn(a) =

1

2i

∫ 2π

0

dθ
cosn θ

cos θ + i/a
.

Once again, g̃ can be considered a function of ql, g̃ =

1 −
(ql)2

4 for ql ≪ 1 and g̃ = 2
ql for ql ≫ 1.

1

FIG. 2: Schematic plot of the attenuation of transverse sound
(for ql >

∼
1) in a spin liquid normalized to αN , the value

in the Fermi liquid state. The “rapid fall” over a narrow
temperature range ∆T at the transition to the spinon paired
state is due to the Meissner effect of the gauge field.

Just as in the EM case, we consider the case when
χq2 ≪ ωσ̃⊥, i.e., DT

ret = (iωσ̃⊥)−1 and we conclude that
α is given by Eq.(13) with g replaced by g̃. In the Fermi
liquid state, we can use this formula to get information
on the spinon mass and lifetime τ by studying the q (i.e.,
ω) dependence. At low temperature τ is a constant dom-
inated by disorder [6] while at finite temperature τ may
have interesting T dependence due to scattering by other
spinons or phonons. If the spinons are paired, the rapid
fall also occurs just below Tc. Next we show that the con-
dition χq2 ≪ ωσ̃⊥ mentioned above is the only relevant
limit. For ql >

∼ 1, ωσ̃⊥ is estimated to be (vs/vF )k2
F /m

and will dominate χq2 as long as vs/vF ≫ (q/kF )2. Since
vs/vF ≈ 10−3, this condition is satisfied for most accessi-
ble ultrasound frequencies. In the opposite case (ql ≪ 1)
the condition is (vs/vF )ql >> (q/kF )2 and is easier to
violate. However, the rapid fall is very small in this case
and difficult to detect and of little interest to us.

Finally we can estimate the temperature range ∆T =
Tc − T of the rapid fall as sketched in Fig.2. Since
iωσ̃⊥ is replaced by iωσ̃⊥−ns(T )/m in Eq.(14) below Tc

we find that ImΠ
(1)
s = ImΠ

(1)
N /

(

1 + (ns(T )/mωσ̃0g̃)2
)

where Π
(1)
s,N are the values in the superconducting and

normal states. For ql ≫ 1, attenuation is dominated
by Π(1) and we estimate ∆T as the temperature when

ImΠ
(1)
s has dropped half the normal state value. We as-

sume the mean field (BCS) behavior ns(T ) = 2n(∆T/Tc)
and we find

∆T

Tc
≈

vs

vF
. (15)

We conclude that fermionic spinons in a fermion couple
to phonons in a way which is identical to electron phonon
coupling in the long wavelength limit. For ql ≫ 1 the
attenuation of transverse ultrasound is dominated by a
component which is due to the fluctuations of transverse
gauge fields. At the pairing transition of the spinon, this
component is suppressed by the onset of the Meissner
effect for the gauge field, leading to a rapid drop in at-
tenuation in a very narrow temperature range below Tc

given by Eq.(15). After the rapid fall, the attenuation
is reduced in the usual way by the gapping of the quasi-
particles. We believe the phenomenon of the rapid fall in
the attenuation of transverse ultrasound gives a clear sig-
nature of spinon pairing and the existence of U(1) gauge
fields.
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