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The quasi-linear bands in the topologically trivial skutterudite insulator CoSb3 are studied under
adiabatic, symmetry-conserving displacement of the Sb sublattice. In this cubic, time-reversal and
inversion symmetric system, a transition from trivial insulator to topological point Fermi surface
system occurs through a critical point in which massless (Dirac) bands appear, and moreover are
degenerate with massive bands. Spin-orbit coupling, while small due to the type of band character,
coupled with tetragonal strain opens the gap required to give the topological insulator. The mineral
skutterudite (CoSb3) is very near the critical point in its natural state.

PACS numbers:

The topological properties of crystalline matter
have become a central feature in characterizing the
electronic structure of small gap, primarily binary,
semiconductors.[1–4] Skutterudite compounds, many of
which have small gaps, have received a great deal of in-
terest in the past two decades. Most recently empha-
sis has been on the “filled” version in which atoms are
incorporated in the large holes in the original skutteru-
dite (CoSb3) structure, which can become unusual heavy
fermion correlated metals and even superconductors.[5]
The earlier interest was in their transport properties.[6]
As small gap semiconductors, many of them were of po-
tential interest in solid state devices, and application as
thermoelectric materials[7, 8] was a strong interest.

A study of the electronic structure[9] uncovered a very
peculiar feature of some of them: there are linear valence
and conduction bands that extended from well out in the
Brillouin zone, changing to quadratic only very near the
zone center k=0. This quasi-linear dispersion produces
peculiar consequences: the density of states behaves as
ε2 near the band edge rather than the usual three dimen-
sional (3D) form

√
ε; the carrier density scales differently

with Fermi energy εF ; the inverse mass tensor ∇∇εk is
entirely off-diagonal corresponding to an “infinite” trans-
port mass; the cyclotron mass is different from usual 3D
behavior, etc. All of this was unique and was potentially
very useful in applications, but theoretical excitement
was tempered because the quasilinear dispersion, which
was clearest in IrSb3, finally became quadratic very near

k=0, just as textbooks claim must be the case.

Since then, a 2D analog graphene has been isolated and
its “Dirac point” with linear dispersion has been stud-
ied comprehensively.[10, 11] The Dirac point of graphene
however occurs at a zone corner point where symmetry
is much lower than at the zone center, and its occurrence
does not violate textbook conventional wisdom. Here
we show that in the skutterudite system small adjust-
ments in the structure produce a critical point at which
strictly linear bands extrude from |~k|=0. This does not
violate any real principle, however it does violate the

commonly used expansions. The linear behavior reflects
non-analytic behavior in the ~k → 0 limit, resulting from
an accidental (but tunable) degeneracy. In this paper
we illustrate how to tune to this critical point, provide a
simple model that reproduces the behavior, and demon-
strate that the transition corresponds also to a trivial to
topological insulator.

FIG. 1: (Color online) Crystal structure of skutterudite
CoSb3, space group Im3̄ (#204). The experimental lattice
constant is a=9.0385 Å and the internal position coordinates
are u=0.335, v= 0.1575. The Co site (small pink sphere) is
octahedrally coordinated to Sb atoms (small yellow spheres),
each of which connects two octahedra. The large (blue) sphere
denotes a large open site which is unoccupied in CoSb3; the
surrounding solid (center of figure) gives an idea of the volume
and shape of the empty region.

The skutterudite structure, pictured in Fig. 1, in the
space group Im3̄ (#204), has a simple cubic Bravais lat-
tice, and is comprised of a bcc repetition of three formula
units (f.u.) when expressed as TPn3. The pnictide (Pn)
atoms form bonded units (nearly square but commonly
designated as rings) which are not required by local en-
vironment or overall symmetry to be truly square; there-



fore they are not although very nearly so. The three Pn4

squares in the primitive cell are oriented perpendicular to
the coordinate axes. Transition metal (T ) atoms (Co, Ir,
...) lie in six of the subcubes of the large cube of lattice
constant a3; the other two subcubes (octants) centered
at sites 2a are empty. The structure is symmorphic, with
24 point group operations; the one that is missing is re-
flection in (110) planes. This space group leads to some
interesting band behavior but is not relevant to the be-
havior we discuss in this paper. The related filled skut-
terudites XT4Pn12 have an atom X incorporated into the
large 2a site of 3m̄ symmetry.

A relevant structural feature is that skutterudite is re-
lated to the perovskite structure �TPn3 (� denotes an
empty A site). Beginning from perovskite, a rotation
of the octahedra keeping the Pn atoms along the cube
faces and the octahedra connected results in the forma-
tion of the (nearly square) Pn4 rings, and the Pn octahe-
dra become distorted and less identifiable as a structural
feature. The transformation is, in terms of the internal
coordinates u and v,

u′ =
1

2
+ s(u − 1

2
); v′ =

1

2
+ s(v − 1

2
). (1)

The transformation path, from perovskite for s=0 to the
observed structure for s=1, is pictured in Fig. 1 of Ref.
12. Below we make use of this transformation to under-
stand the opening of the (pseudo)gap between occupied
and unoccupied states and to tune an unusual transition.

Evolution through a critical point. The electronic
structure of skutterudites has been of keen interest
since the quasi-linear bands (QLB) near the zone cen-
ter were uncovered by Singh and Pickett.[9] The skut-
terudites that are isovalent with CoSb3 are very narrow
gap semiconductors (or possibly very small negative gap
semimetals, or point Fermi surface zero-gap materials,
viz. IrSb3 [9]). In following the band structure along the
perovskite-to-skutterudite structural path given above, it
is found that the gap at the Fermi level only opens up
near the end of the transformation (s ∼ 0.90 − 0.95),
where the Sb4 rings approach their equilibrium size and
the empty 2a site is fully developed into a large interstice.
Only near s ∼ 1 does the quasilinear band emerge from
the dense spaghetti of occupied valence Sb 4p and Co 3d
bands. Analysis of the band character, projected
density of states (DOS), and charge density in-
dicates no Co 3d character and very little Sb 4p
character in the quasilinear bands, which arise
from Bloch states (one on either side of the gap)
associated with Sb 5s states with some charge ex-
tending into the large empty 2a site.

To illustrate the progression of the band structure
through a critical point at which a Dirac point (with
Dirac hypercone) appears, we provide in Fig. 2 the be-
havior of the bands for s = 1.020, 1.023, 1.025, corre-
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FIG. 2: Bands near k=0 in skutterudite CoSb3, showing the
band crossing as the valence band rises due to the variation
of the Sb coordinate, through the critical point of quadru-
ple degeneracy of a Dirac pair and a conventional band pair.
Top: before transition, s=1.020. Middle: at the critical point,
s=1.023. Bottom: just after the transition, s=1.025.

sponding to just before, precisely at, and just beyond
gap closing. At zero gap, the QLBs become precisely lin-
ear (Dirac) bands emanating from the zone center. Be-
cause one of them is degenerate (by crystal symmetry)
with two other bands in a 3-fold set, this Dirac point is
degenerate with two conventional (massive) conduction
bands. Beyond the critical point scr = 1.023, the sin-
glet lies above the triplet, and the Fermi level lies at a
symmetry-determined, point FS energy comprised of one
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hole and two electron bands. While beyond the critical
point these bands are all “massive” in the rigorous sense,
immediately beyond the transition the masses of both
quasilinear (valence and conduction) bands arise contin-

uously from zero mass to the linear behavior that extends
as far as the bands can be followed before they helplessly
mix with and disappear into the background spaghetti.
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FIG. 3: Bands as in Fig. 2, with s=1.010, 1.019, 1.020 and
with spin-orbit coupling included. Although the threefold “p”
band degeneracy is split by SOC, the Dirac bands and hyper-
cone survive, though the lower (hole) band mixes with one of
the massive bands very close to k=0.

At first sight, the basic underlying feature seems to be

provided by two states at ±ε◦ on some scale, which will
become degenerate (ε◦ = 0) at the critical point. Al-
though the two-band[13] Kane model has been used to
represent the bands of CoSb3, it fails to give the linear
dispersion at arbitrarily small k as the gap vanishes, so
some other picture must be constructed. While the bands
are required to have only cubic – not spherical – symme-
try, the linear bands for CoSb3 are in fact isotropic well
out into the zone, that is, the velocity is indistinguishable
in all three high symmetry directions. The simplest view-
point is that two bands are linearly coupled (hij ∝ v|~k|
for i 6= j) at small |~k| ≡ k, in which case the eigenvalues
are

εk = ±
√

ε2
◦

+ (v|~k|)2 → ±v|~k|, (2)

giving the desired two linear bands upon degeneracy
(ε◦ → 0).

So how does one obtain the desired coupling? The
easiest way to get linear coupling at small k, in a tight-
binding picture, is from a coupling such as t(sinkxa +
sinkya + sinkza) on the off-diagonal. However, expand-
ing this coupling for small k (kx + ky + kz) does not give
isotropic coupling. What could give isotropic coupling?

The skutterudite structure, which has bcc translational
symmetry with coupled Sb4 ring 5p orbitals and large
empty holes in the lattice that may harbor an s-like or-
bital in its well, can be modeled with a p triplet coupled
to s-symmetry states on the bcc neighbors. Working in
a picture where the p triplet is diagonalized at k=0, the
coupling of the px function with the bcc-situated s or-
bitals gives

Tx ≡ T (kx, ky, kz) = 8it sin
kxa

2
cos

kya

2
cos

kza

2
(3)

and symmetrically for coupling of py and pz partners.
Then using on-site energies εs and εp, the tight-binding
Hamiltonian is

H =









εs Tx Ty Tz

T ∗

x εp 0 0
T ∗

y 0 εp 0
T ∗

z 0 0 εp









(4)

with eigenvalues

εj = εp; εp;
εs + εp

2
±

√

(
εs − εp

2
)2 + |T |2, (5)

where |T |2 ≡ |Tx|2 + |Ty|2 + |Ty|2. To first order in k and
and at the critical point εs → εp, this result gives (1) 4-
fold degenerate bands ε = εp at k=0 (where T vanishes),
(2) two bands have isotropic linear dispersion εp ± vk
with v = 4ta, (3) the other two bands are flat in Eq. 4,
but will acquire finite mass by the smaller p− p hopping
that has been neglected for simplicity. For |εp ∼ εs|,
three-fold degeneracy is preserved at k=0. This model
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faithfully reproduces the behavior in CoSb3 in Fig. 2 as
the Sb rings are varied in size adiabatically.

A number of works[14–16] have pointed out that in-
sulators in 3D, as well as in 2D, can be characterized
by topological invariants, and Fu and Kane followed
by demonstrating[17] that when inversion symmetry is
present (as in space group Im3̄), the Z2 invariant can
be obtained from the parities of the occupied states at
the invariant momenta. Here only the Γ point requires
consideration, since reoccupation occurs only there. The
lower band in Fig. 2 has odd parity at Γ while the triplet
is even. The product of parities (at Γ, and at all time-
reversal momenta, is positive, so CoSb3 is the expecte
trivial insulator. As the critical point is crossed, the
product of the parities of the occupied bands at Γ, and
hence the Z2 invariant, changes sign, the signal of a tran-
sition to a topological insulator. This change also reveals
that the transition is associated with the entanglement
of the odd symmetry valence band with an even parity
conduction band that has the same symmetry away from
Γ, and hence mixes with. The final state at this level
is actually gapless; it is a (point Fermi surface) zero-gap
semiconductor, with the mass of the lowest band rising
from zero and giving rise to extremely light mass carriers
in the limit of low hole doping. The system rendered a
true topological insulator by strain (lifting of the band
degeneracy).

Effect of Spin-Orbit Coupling and Tetragonal Strain.

The system is rendered a true topoligical insulator by
SOC and tetragonal strain. In Fig. 3 the effect of in-
trinsic (relativistic) SOC for the cubic system is shown.
The triplet is split (by 40 meV) into a lower energy dou-
blet and higher energy singlet. At the critical point
ssoc

cr = 1.019 (it is slightly reduced by SOC) the (for-
merly) valence band singlet has crossed the two-fold
level and become degenerate with the conduction sin-
glet, giving rise to a Dirac point involving the two upper
bands which are now separated from the doublet. Thus
the Dirac band behavior survives the inclusion
of SOC. To make topological aspects completely
clear, we have studied small tetragonal distor-
tions (c/a ∼ 1.01) that lift the last degeneracy at Γ
(which pins the Fermi level in Fig. 3). This sym-
metry breaking opens a gap, and we have verified
using the criterion of Fu and Kane[17] that scr

indeed separates a trivial insulator from a topo-
logical insulator.

Summary. We have established that the trivial insula-
tor to topological zero-gap semiconductor occurs simul-
taneously with the appearance of a Dirac point at k=0,
which is degenerate with conventional (massive) bands
at the critical point. The appearance of the Dirac point
at k=0 is clarified using a tight-binding model, being
due to the tuning of a degeneracy of site energies of the
orbitals that are involved. A small uniaxial strain, ex-
ternally applied or resulting from epitaxial growth on a

substrate with some lattice match, is required to lift the
cubic-lattice degeneracy and produce the topological in-
sulating state.

It is worthwhile to note that this “robust” topological
state is delicate with respect to the Sb sublattice posi-
tion: the transition occurs discontinuously at s = scr

upon continuous, symmetry-preserving change of the Sb
coordinate. Such a situation will allow probing into just
which (bulk or surface) properties are associated with
the topological nature of the bulk electronic state. Of
course, there are many properties that change discontin-
uously at an insulator-to-metal transition, so effects of
topologicality will require more detailed study.

We acknowledge comprehensive discussion with R. R.
P. Singh. This work was supported by DOE Grant DE-
FG02-04ER46111.
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