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We consider a generalization of the Kuramoto model in which the oscillators are coupled to
the mean field with random signs. Oscillators with positive coupling are “conformists”; they are
attracted to the mean field and tend to synchronize with it. Oscillators with negative coupling are
“contrarians”; they are repelled by the mean field and prefer a phase diametrically opposed to it.
The model is simple and exactly solvable, yet some of its behavior is surprising. Along with the
stationary states one might have expected (a desynchronized state, and a partially-synchronized
state, with conformists and contrarians locked in antiphase), it also displays a traveling wave, in
which the mean field oscillates at a frequency different from the population’s mean natural frequency.

PACS numbers: 05.45.Xt, 89.75.-k

Globally coupled phase oscillators have been used
to model diverse self-synchronizing systems in physics,
chemistry and biology [1]. In the simplest cases the cou-
pling is uniform: all the oscillators interact with equal
strength, as in the classic Kuramoto model

φ̇i = ωi +
K

N

N
∑

j=1

sin(φj − φi), i = 1, . . . , N. (1)

Here φi(t) is the phase of the ith oscillator at time t, and
ωi is its natural frequency, chosen at random from a uni-
modal, symmetric probability density g(ω). Kuramoto
assumed the coupling strength K is positive, correspond-
ing to an attractive interaction between the oscillators.

A natural generalization is to allow K to have either
sign. There are various ways to do this while still re-
taining the simplifying assumption of infinite-range in-
teractions [2]. Several authors, inspired by models of
spin glasses [3], have examined the effects of replacing K
with random positive and negative coupling terms Kij

inside the sum in Eq. (1). The matrix elements Kij are
usually assumed to be symmetric (Kij = Kji) and inde-
pendently chosen from the same probability distribution.
The resulting models show evidence of glassy behavior,
but their dynamics are not yet well understood [4].

A second approach, motivated by neural networks with
excitatory and inhibitory coupling [5], is to replace K
with a random variable Kj inside the sum in Eq. (1),
where Kj > 0 for excitatory neurons, and Kj < 0 for in-
hibitory neurons. Now the randomness is regarded as an
intrinsic property of the oscillators themselves [6], rather
than of the interactions between them (as in the glassy
models). Thus the interactions between i and j need not
be symmetric (unless Ki happens to equal Kj). Some-
what surprisingly, extending the Kuramoto model in this
fashion yields nothing qualitatively new; the dynamics
turn out to resemble those of the original model [7].

Here we explore a third possibility: we replace K by

a random variable Ki outside the sum in Eq. (1). The
effect is to endow the oscillators with two kinds of person-
alities. Those with Ki > 0 behave like conformists—they
tend to fall in line with whatever rhythm has emerged in
the population, whereas those with Ki < 0 are repelled
by the prevailing rhythm and act like contrarians. In
that sense the model is loosely analogous to sociophysi-
cal models of opinion formation [8]. It is also reminiscent
of other two-population variants of the Kuramoto model,
such as those involving two frequency distributions [9] or
two levels of attractive coupling [10].

The collective rhythm in the model is quantified by the
complex order parameter

Z = ReiΦ =
1

N

N
∑

j=1

eiφj , (2)

where the amplitude 0 ≤ R ≤ 1 measures the system’s
macroscopic coherence and Φ is the average phase. Then,
by replacing K with Ki, we find that Eq. (1) reduces to

φ̇i = ωi +KiR sin(Φ − φi), i = 1, . . . , N. (3)

Equation (3) shows that the model retains the mean-
field character of the original Kuramoto model; all the
oscillators effectively interact only through the mean-field
variables R and Φ. Furthermore, the term KiR sin(Φ −
φi) highlights the difference between the two types of
oscillators; it pulls the conformists toward the collective
phase Φ but pushes the contrarians away toward Φ + π.
The resulting dynamics are a bit more subtle than that,
however, because the non-identical frequencies ωi also
play a crucial role.

To probe the system’s long-term behavior, we per-
formed numerical simulations. The ωi were chosen at
random from a Lorentzian probability density g(ω) =
γ/[π(ω2 + γ2)] of width γ and mean 〈ω〉 = 0 (the mean
can be set to zero by choosing a suitable rotating frame).
For simplicity we assumed a double-delta distribution of
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FIG. 1: (Color online) The π-state and traveling wave state.
Parameters: N = 25600, γ = 0.05, K1 = −0.5, K2 = 1.0. (a)
Phase distribution for the π-state; the mean phase difference δ

between the conformist (red) and contrarian (blue) oscillators
is given by δ = π. (b) The order parameter Z(t) for the π-
state corresponds to a fixed point. (c) Phase distribution
for the traveling wave (TW) state; δ 6= π. (d) The order
parameter for the traveling wave state traces a circle, implying
a non-zero mean phase velocity 〈φ̇(t)〉 6= 0.

coupling strengths: Γ(K) = (1− p)δ(K −K1) + pδ(K −
K2), where K1 < 0 and K2 > 0 represent the cou-
plings for the contrarians and conformists, respectively,
and p denotes the probability that a random oscillator is
a conformist. Equation (3) was integrated using Heun’s
method with a time step δt = 0.01 for 105 time steps.
The initial 90% of each run was discarded as a transient,
after which all quantities of interest were measured.

The system always settles into one of three kinds of
long-term behavior, depending on the parameters and
initial conditions: (1) Incoherent state: The oscillators
are completely desynchronized and scattered uniformly
across all phases. (2) π-state: The conformist oscillators
converge to a partially synchronized state [1], as do the
contrarian oscillators. Both generate stationary distribu-
tions of phases. The peaks of the distributions, as one
would expect, are diametrically opposed, separated by
an angle δ = π, as shown in Fig. 1(a). Because both
distributions are stationary, the order parameter Z(t)
remains motionless when plotted in the complex plane
(Fig. 1(b)). (3) Traveling wave state: The phase dis-
tributions spontaneously travel at constant speed along
the phase axis, always maintaining a constant separation
δ 6= π (Fig. 1(c)). As a result, the order parameter Z(t)
traces a circle about the origin at constant angular ve-
locity, as shown in Fig. 1(d).

Figures 2 and 3 show the transitions among these
states as we vary p (the proportion of conformists). The
results divide into two cases, depending on whether the
conformists or the contrarians are more strongly affected
by the mean field.
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FIG. 2: (Color online) Order parameter R vs. p for Q = 3,
computed by numerical integration (symbols) and compared
to theoretical prediction from Eq. (11) (lines). Solid lines, sta-
ble states; dotted line, unstable π-state. Stable π-states were
found numerically by integrating from the in-phase initial con-
dition φi(0) = 0 for all i, for each p. Stable incoherent states
were found by integrating from random initial conditions. Pa-
rameters: N = 25600, γ = 0.05, K1 = −3.0, K2 = 1.0.

Figure 2 shows what happens when the contrarians are
more strongly affected, in the sense that Q ≡ −K1/K2 >
1. As we increase p from 0, the system starts out incoher-
ent, which makes intuitive sense: for small p, the system
is dominated by contrarians who (of course) cannot agree
on anything. But once p exceeds a certain threshold,
there are enough conformists around for a consensus to
emerge. At that point the system jumps discontinuously
up to the π-state, where it is polarized into two camps.
Whatever the conformists decide on, the contrarians op-
pose them. Lowering p then yields a discontinuous and
hysteretic return to the incoherent state.

On the other hand, if the conformists are more in-
tensely influenced by the mean field (Q < 1), the transi-
tions become continuous and reentrant. Figure 3 shows
that as p increases from 0, the system goes from incoher-
ence to the π-state, then to the traveling wave state and
finally back to the π-state.

The traveling wave state does not occur in the original
Kuramoto model (the limiting case for which p = 1) [19]
or in the opposite limit p = 0 where all the interactions
are repulsive [12]. Traveling waves appear only in an
intermediate range of p, indicating that both types of
oscillators are essential, and only if γ is sufficiently small,
indicating that the oscillators need to be close enough to
identical. To quantify this, Fig. 4 plots the wave speed
Ω ≡ (1/N)

∑N
j=1

〈φ̇j〉t as a function of p and γ. Notice
that the traveling wave state occurs in a wider window
as γ tends to 0.

To explain these numerical findings, we begin by reduc-
ing the model to a low-dimensional system that governs
its long-term macroscopic behavior. As N → ∞, the evo-
lution of the system is given by the continuity equation
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FIG. 3: (Color online) Order parameter R vs. p for Q = 0.5,
computed by numerical integration. Inset shows theoretical
prediction from Eq. (11). Red solid line, stable states; blue
dotted line, unstable state. Parameters: N = 25600, γ =
0.05, K1 = −0.5, K2 = 1.0.

0

0.02

0.04

0.060.2 0.4 0.6 0.8

0
0.1
0.2
0.3

Ω

γ

p

Ω
 0
 
 0.1
 
 0.2
 
 0.3

FIG. 4: (Color online) Wave speed Ω as a function of γ and
p for Q = 0.5. The data are also plotted as a contour map,
with heights indicated by the color bar. Dotted lines show
the predicted transition curves at which the traveling wave is
born, as obtained from Eq. (15).

for the probability density function f(φ,K, ω, t):

∂f

∂t
+

∂

∂φ
(fv) = 0. (4)

Here v = v(φ,K, ω, t) is the continuum limit of Eq. (1):

v = ω +K

∫

sin(φ′ − φ)f(φ′,K ′, ω′, t)Γ(K ′)dK ′dφ′dω′.

(5)
The complex order parameter becomes Z(t) =
∫

eiφ
′

f(φ′,K ′, ω′, t)Γ(K ′)dK ′dφ′dω′, and the velocity v
simplifies to

v = ω +
K

2i
(Ze−iφ − Z̄eiφ), (6)

where the overbar indicates the complex conjugate (c.c.).
Next we use the remarkable ansatz recently discovered
by Ott and Antonsen [13]. The special family of density
functions given by

f(φ,K, ω, t) =
g(ω)

2π

{

1 +

[

∞
∑

n=1

[a(K,ω, t)]neinφ + c.c.

]}

(7)
solves the governing equations exactly, as long as a
evolves according to

ȧ = −iωa+
K

2
(Z̄ − Za2). (8)

(This can be checked by substituting Eqs. (6) and
(7) into Eq. (4).) Meanwhile, Z reduces to Z(t) =
∫

∞

−∞

∫

∞

−∞
Γ(K)ā(K,ω, t)g(ω)dωdK since only n = 1 in

the c.c. term of f contributes to the φ-integral. A
further reduction occurs because g(ω) is Lorentzian; by
closing the contour for the ω-integral in the lower half
plane, we find Z(t) =

∫

∞

−∞
Γ(K)ā(K,−iγ, t)dK. Next,

let z(K, t) = a(K,−iγ, t). Then Eq. (8) gives

ż = −γz +
K

2
(Z̄ − Zz2), (9)

where Z =
∫

∞

−∞
Γ(K)z̄(K, t)dK. For the double-delta

distribution Γ(K) = (1 − p)δ(K −K1) + pδ(K −K2), Z
is simply

Z = (1 − p)z̄1 + pz̄2, (10)

where z1 = z(K1, t) and z2 = z(K2, t). The variables z1
and z2 have nice interpretations: they are complex order
parameters for the contrarians and conformists. From
Eqs. (9) and (10), they evolve according to

ż1 = −2γz1 −Q
[

(pz2 + qz1) − (pz̄2 + qz̄1)z1
2

]

,

ż2 = −2γz2 + (pz2 + qz1) − (pz̄2 + qz̄1)z
2

2 , (11)

where q = 1 − p. (For convenience we have also rescaled
time; t has been replaced by K2t/2 and γ by γ/K2).

The low-dimensional system (11) is guaranteed to cap-
ture all the long-term macroscopic behavior of the orig-
inal model. This follows from a recent theorem of Ott
and Antonsen [14], which makes crucial use of the as-
sumption that the oscillators are non-identical [20]. We
have numerically explored the dynamics of z1 and z2 by
integrating Eq. (11), and find that we can quantitatively
reproduce all the findings shown in Figs. 1–4.

The reduced system yields a number of exact results
about the three attractors and their bifurcation points.
The incoherent state corresponds to the fixed point z1 =
0, z2 = 0. Linearizing (11) about this state shows that
incoherence is stable if and only if p < pc, where

pc =
Q+ 2γ

Q+ 1
. (12)
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The π-state is born at pc when incoherence loses stabil-
ity and gives rise to a circle of fixed points with R > 0.
All of these are π-states. They are all equivalent, be-
cause of the model’s rotational symmetry; they differ
only by the arbitrary angle Φ, the phase of the com-
plex order parameter. To calculate how they depend
on parameters, let Z = R > 0, z1 < 0 and z2 > 0,
without loss of generality. Solving Eq. (10) for p, we
find p = (R − z1)/(z2 − z1). Then the relevant fixed
points of Eq. (11) are z1 = (γ −

√

γ2 + (QR)2)/(QR)

and z2 = (−γ +
√

γ2 +R2)/R. Hence

p =
QR2 − γ +

√

γ2 + (QR)2

−γQ+Q
√

γ2 +R2 − γ +
√

γ2 + (QR)2
. (13)

This gives an exact parametrization of the π-states. Near
the transition point where R → 0, we find that R ∼
(p− pc)

1/2, where pc = (Q+ 2γ)/(Q+ 1) as before.
The traveling wave state is created when the circle of

π-states loses stability and turns into a circular limit
cycle for Eq. (11). To calculate this bifurcation, let
z1 = r1e

−iψ1 and z2 = r2e
−iψ2 . Then Eq. (11) yields

ṙ1 = −2γr1 −Q(1 − r1
2)(qr1 + pr2 cos δ),

ṙ2 = −2γr2 + (1 − r2
2)(pr2 + qr1 cos δ),

δ̇ = sin δ

[

Qp
r2
r1

(1 + r1
2) − q

r1
r2

(1 + r2
2)

]

, (14)

where δ ≡ ψ1 − ψ2. The advantage is that the traveling
wave state reduces to a fixed point of (14), with δ 6= π.
Linearizing (14) about the π-state (13) and seeking a zero
eigenvalue, we find that for γ ≪ 1 the transition to the
traveling wave state occurs at

pℓ =
Q

1 +Q
+

3γ

1 +Q
+ O(γ3/2),

pu =
1

1 +Q
−

γ

1 +Q
+

(Q+ 1)γ2

(Q− 1)Q
+ O(γ3), (15)

where pℓ and pu represent the lower and upper values
at which the π-state loses stability. These predicted sta-
bility boundaries, shown as dotted curves in Fig. 4, are
in good agreement with the simulation results. The the-
ory also correctly predicts that if γ is large enough, the
traveling wave state disappears and π-state becomes sta-
ble for all R. For instance, when Q = 0.5, a numerical
eigenvalue computation shows that the π-state is always
stable if γ & 0.06, as in Fig. 4.

In future work, it will be interesting to see if the trav-
eling wave also occurs in models with local coupling. Its
existence in the present model is made possible by the
asymmetry of the coupling: Kij 6= Kji. Such asym-
metry is common in biological and social systems. For

experimental tests of the model’s predictions, however, it
might be more promising to look for physical realizations
of Eq. (3) in series arrays of Josephson junctions [17] or
in liquid crystal spatial light modulators suitably coupled
by global optoelectronic feedback [18].
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