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Two-photon scattering by a driven three-level emitter in a one-dimensional waveguide

and electromagnetically induced transparency

Dibyendu Roy
Department of Physics, University of California-San Diego, La Jolla, California 92093-0319

We study correlated two-photon transport in a (quasi) one-dimensional photonic waveguide cou-
pled to a three-level Λ-type emitter driven by a classical light field. Two-photon correlation is
much stronger in the waveguide for a driven three-level emitter (3LE) than a two-level emitter.
The driven 3LE-waveguide shows electromagnetically induced transparency (EIT), and we investi-
gate the scaling of EIT for one and two photons. We show that the two transmitted photons are
bunched together at any distance separation when energy of the incident photons meets “two-photon
resonance” criterion for EIT.

PACS numbers: : 03.65.Nk, 42.50.-p, 32.80.Qk

Realization of controlled optical nonlinearity at the
level of individual photons would have direct applica-
tion to build large scale quantum networks for optical
quantum information processing [1]. Unlike electrons,
photons do not interact with each other, but photon-
photon interaction can be created using strong light-
matter interaction in optically thick media such as ultra-
cold atomic gases. Although for practical implementa-
tion in quantum information processing one would need
to produce optical nonlinearity with a few atoms and
photons. With this inspiration, experimentalists have
just recently demonstrated electromagnetically induced
transparency (EIT) for weak probe light field with a sin-
gle natural or artificial atom in a cavity [2–4] or in free
space [5]. EIT is a destructive quantum interference phe-
nomenon where the presence of a control light field elimi-
nates absorption of the probe light by a multi-level atom
[6–8]. Thus, the atom acts as an optical transistor where
transmission of a light is controlled by another light field.

Recently a new scheme to achieve strong photon-
photon interaction in one-dimensional (1D) waveguides
has been proposed [9–12]. It has been shown in a system
consisting of a two-level emitter (2LE) coupled to a 1D
continuum for photons. One interesting feature of the 1D
systems is that the spontaneously emitted and scattered
waves from the 2LE will always interfere with the incident
wave. Local interaction generates a strong correlation be-
tween photons in the waveguide by preventing multiple
occupancy of photons at the 2LE. Several nanoscale sys-
tems such as photonic crystal waveguides [13], surface
plasmon modes of metallic nanowires [14, 15], microwave
transmission lines [16], optical nanofibers [17, 18], semi-
conductor or diamond nanowires [19, 20] would act as
1D continuum for photons. Now, it will be interesting to
study photon transport in a 1D waveguide with a multi-
level atom, which will show more complex quantum inter-
ference phenomena. Single photon scattering by various
configurations of a three-level emitter (3LE) in a quasi 1D
waveguide has been evaluated in Ref.[21]. The purpose
of this paper is to study correlated two-photon dynamics
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FIG. 1: Schematic of a three-level emitter driven by a classical
laser beam with Rabi frequency Ω, and two incident photons
with wavenumber k1, k2 from left.

in a 1D waveguide coupled to a driven Λ-type 3LE.

We consider the Hamiltonian for the full quasi 1D sys-
tem as H = H0 + H3LE + Hc where H0 and H3LE rep-
resent respectively the free photons and the 3LE in the
waveguide. Hc denotes local coupling between the pho-
ton modes and the 3LE. We consider a linear energy
(Ek)-momentum (k) dispersion for the free photons, i.e.,
Ek = vgk, where vg is the group velocity of the photons.
We divide the positive and the negative momentum pho-
tons as right- and left-moving modes. Thus we write
H0 = −ivg

∫

dx[a†
R(x)∂xaR(x) − a†

L(x)∂xaL(x)], where
aR(x) [aL(x)] is the annihilation operator of a right-[left-]
moving photon at position x. We set vg = 1 for simplic-
ity. We consider that the excited state |2〉 of the Λ-type
emitter (Fig. 1) is coupled to another level |3〉 by a clas-
sical laser beam with Rabi frequency Ω and detuning ∆.
The energy of the ground state |1〉 is set to zero as ref-
erence. The 3LE Hamiltonian within the rotating wave
approximation is H3LE = (E2 − iγ2/2)|2〉〈2|+(E2−∆−
iγ3/2)|3〉〈3| + (Ω/2)(|3〉〈2| + |2〉〈3|), where spontaneous
emission from states |2〉 and |3〉 to other modes out of
the 1D waveguide is modeled by including an imaginary
part −iγ2/2 and −iγ3/2 to the energies of the excited
levels in the 3LE [21, 22]. Here we take the 3LE being
side-coupled to the propagating light modes locally at
x = 0; then Hc = V̄ |2〉〈1|(aR(0)+aL(0))+H.c., where V̄
is coupling strength between the 3LE and the photons.
With the standard transformation to even-odd field op-
erators, i.e., ae(x) = (aR(x) + aL(−x))/

√
2 and ao(x) =



2

(aR(x)−aL(−x))/
√

2, the Hamiltonian of the full system
breaks into two decoupled parts; i.e., H = He+Ho where
He = −i

∫

dx a†
e(x)∂xae(x) + H3LE + V

(

a†
e(0)|1〉〈2| +

|2〉〈1|ae(0)
)

and Ho = −i
∫

dx a†
o(x)∂xao(x) with V =√

2V̄ .
Single-photon dynamics in this system has been stud-

ied recently in Ref.[21]. The single-photon transmission
and reflection amplitudes are given by t̃k = χ/(χ+ iΓ/2)
and r̃k = −iΓ/2(χ + iΓ/2) respectively, where Γ = V 2

and χ = Ek − E2 + iγ2/2− Ω2/4(Ek − E2 + ∆ + iγ3/2).
The transmission coefficient Tk and reflection coefficient
Rk show EIT-type line-shapes. Tk becomes unity at the
incident energy Ek = E2 − ∆ (“two-photon resonance”)
for the state |3〉 being meta-stable, i.e., γ3 = 0. The
population of the excited state |2〉 goes to zero at the
“two photon resonance” (TPR), this leads the 3LE to
the “dark state”. The width of the transparency win-
dow depends only on the strength of the control field Ω.
With increasing value of γ3 from zero, Tk at the TPR falls
from unity, and finally the EIT line-shape is completely
washed away.

The system of a 2LE coupled to a 1D continuum
for photons is equivalent to a bosonic version of the
celebrated single-impurity Anderson model for an infi-
nite repulsive interaction between photons at the 2LE

[10, 11, 23]. Two-photon transport in this system has
been investigated recently for both side-coupled [10–
12] and direct-coupled emitter [23], and it shows strong
photon-photon interaction in higher order correlations of
the transmitted and reflected fields. Here we carry out
the two-photon transport for the driven Λ-type 3LE cou-
pled to a 1D continuum of photons following Refs.[23]
based upon the Bethe ansatz. It is expected that the two-
photon dynamics of the present model is much more com-
plicated than for the 2LE due to complex interferences at
the 3LE. We here solve the problem for a strong coupling
in the presence of a classical laser beam. The two-photon
incoming state with two incident photons from the left
(i.e., right-moving) is given by

∫

dx1dx2
1

2π
√

2
φk(x1, x2)

1√
2
a†

R(x1)a
†
R(x2)|0,−〉 , (1)

where φk(x1, x2) = (eik1x1+ik2x2 +eik1x2+ik2x1) with k =
(k1, k2), and the total energy of the two photons Ek =
k1 + k2. Applying the even-odd transformation for the
field operators, we determine the different components
of the two-photon incoming state into ee, oo, and eo
subspaces. The general two-photon scattering eigenstate
in the various subspaces is given by

∫

dx1dx2

[

A2

{

g(x1, x2)
1√
2
a†

e(x1)a
†
e(x2)|0, 1〉 + e(x1)δ(x2)a

†
e(x1)|0, 2〉 + f(x1)δ(x2)a

†
e(x1)|0, 3〉

}

+ B2

{

j(x1; x2)

a†
e(x1)a

†
o(x2)|0, 1〉 + v(x1)δ(x2)a

†
o(x1)|0, 2〉 + w(x1)δ(x2)a

†
o(x1)|0, 3〉

}

+ C2 h(x1, x2)
1√
2
a†

o(x1)a
†
o(x2)|0, 1〉

]

(2)

with g(x1, x2) = g(x2, x1) and h(x1, x2) = h(x2, x1).
e(x), f(x) (v(x), w(x)) are the probability amplitudes of
one photon in the e (o)-subspace while the 3LE in the ex-
cited state |2〉 and |3〉 respectively. Here A2, B2 and C2

identify the boundary conditions for the incoming pho-
tons. When both the photons are incoming from the
left, A2 = B2 = C2 = 1/2. Note that we express the
two-photon scattering eigenstate in the space of free pho-
tons as well as the 3LE. This is required to calculate a

two-photon current in the system [23]. We evaluate var-
ious (seven) amplitudes in Eq.(2) by solving seven linear
coupled first-order differential equations, which are ob-
tained from the stationary two-photon Schrödinger equa-
tion. Some parts of e(x), f(x) (for x > 0) and g(x1, x2)
(for x1, x2 > 0) fall exponentially with increasing |x| or
|x̃| (with x̃ = x1 − x2), these are contributions from the
two-photon bound state arising in the ee-subspace. We
find in the ee-subspace for xc = (x1 + x2)/2,

g(x1, x2) =
1

2π
√

2
(ϕk1

(x1)ϕk2
(x2) + ϕk2

(x1)ϕk1
(x2)) −

iV eiEkxc

√
2

θ(x1)θ(x2)
[

Υ1e
i(Ek−2E2+i(γ2+Γ))|x̃|/2

− Υ1Ω
2

4Ξ

1

Ξ − Ek + α − iβ/2

(

ei(Ek−2E2+i(γ2+Γ))|x̃|/2 − ei(Ek−2α+iβ)|x̃|/2
)

+
Υ2Ω

2Ξ
ei(Ek−2α+iβ)|x̃|/2

]

f(x) =
1

2π

(

ϕk1
(x)ρk2

ρ̃k2
+ ϕk2

(x)ρk1
ρ̃k1

)

−
[Υ1Ω

2

1

Ξ − Ek + α − iβ/2

(

eiΞ x − ei(Ek−α+iβ/2)x
)

− Υ2e
i(Ek−α+iβ/2)x

]

θ(x)

e(x) =
1

2π

(

ϕk1
(x)ρk2

+ ϕk2
(x)ρk1

)

+ Υ1e
iΞxθ(x) +

Ωf(x)

2 Ξ
where (3)
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FIG. 2: |t2(x1, x2)|
2 and |r2(x1, x2)|

2 of a driven 3LE (Ω = 0.033Γ) and a 2LE (Ω = 0) for (a) Ek1
= Ek2

= E2, (b)
Ek1

= Ek2
= E2 − ∆, and (c) Ek1

= 1.4E2, Ek2
= 0.6E2. In all three plots, ∆ = 0.056Γ, γ2 = 0.01Γ, Γ/2π = 1.43 MHz, and

Ek, E2 are order of GHz. γ3 = 0.001Γ in (a) and (c). x1, x2 are scaled by Γ.

ρk =
V

k − E2 + i(γ2 + Γ)/2
, ρ̃k =

Ω/2

k − α + iβ/2

α = E2 − ∆ +
Ω2(Ek − E2)

4|Ξ|2 , β = γ3 +
Ω2(γ2 + Γ)

4|Ξ|2

ϕk(x) = eikx(θ(−x) + τkθ(x)), τk = 1 − iV ρk

(

1 +
Ωρ̃k

2 Ξ

)

Ξ = (Ek − E2) + i(γ2 + Γ)/2

Υ1 =
iV

π
ρk1

ρk2

(

1 +
Ω

4Ξ
[ρ̃k1

+ ρ̃k2
]
)

Υ2 =
(

ρk1
ρ̃k1

(1 − τk2
) + ρk2

ρ̃k2
(1 − τk1

)
)

/2π

Similarly we derive j(x1; x2), v(x), w(x) in the eo-
subspace. As there is no scattering in the oo-subspace,
h(x1, x2) = φk(x1, x2)/(2

√
2π). The amplitudes of

the two-photon scattering state in Eq.3 in the limit
Ω, γ2, γ3 → 0 match with the results for a 2LE coupled to
a 1D waveguide [23]. ϕk(x) in g(x1, x2) (and j(x1; x2))
depends on energy k as well as the total energy Ek of
two incident photons through τk; this leads to a strong
photon-photon correlation. In the absence of the classical
field, i.e., Ω → 0, ϕk(x) becomes only k−dependent as
expected for a 2LE-waveguide system. The two-photon
bound state in the scattering state also shows a strong
correlation between photons; this is due to the 1D feature
of scattering, and is similar for a 3LE and a 2LE.

Now we integrate out the field operators of the 3LE
from Eq.2, and write down an asymptotic outgoing scat-
tering state in the original RR, LL and RL subspaces of
free photons as a combination of two transmitted, two
reflected and one transmitted plus one reflected photon.

∫

dx1dx2

[

t2(x1, x2)
1√
2
a†

R(x1)a
†
R(x2) + r2(x1, x2)

1√
2
a†

L(x1)a
†
L(x2) + rt(x1, x2)a

†
R(x1)a

†
L(x2)

]

|0, 1〉 ,(4)

where t2, r2, and rt can be expressed in terms of
g(x1, x2), h(x1, x2) and τk. A possible experimental set-
up to measure t2, r2 and rt has been proposed in [11] by
placing a beam splitter at the ends of the 1D waveguide

with a single-photon counter on each output arm of the
beam splitter. We plot |t2(x1, x2)|2 and |r2(x1, x2)|2 as a
function of x̃ (≡ x1 − x2) for Ω = 0 and Ω 6= 0 in Fig.2.
For Ω = 0, the level |3〉 turns inactive, and it corresponds
to a 2LE coupled to a 1D waveguide.

A two-photon resonance in the 2LE-waveguide occurs
for energy of the two incoming photons, Ek1

= Ek2
and

Ek = 2E2. |t2(x1, x2)|2 has a maximum at x̃ = 0 at the
resonance, and the magnitude of the maximum reduces
with increasing |Ek1

−Ek2
|. We find that the two-photon

correlations in a 2LE [11] and a driven 3LE are quite sim-
ilar at energies away from the TPR condition. Here we
plot the two-photon correlations of both the transmitted
and the reflected photons of the driven 3LE-waveguide
in Fig.2(a) for a relatively weaker driving field Ω. The
peak manifests bunching of two transmitted photons af-
ter scattering by an emitter. Of course, there are some
differences in these two-photon correlations for a 2LE and
a driven 3LE when a very strong driving field is applied.

In Fig.2(b) we plot |t2(x1, x2)|2 for energy of the in-
cident photons, Ek1

= Ek2
= E2 − ∆, at the TPR

where the single-photon transmission and reflection coef-
ficients of the 3LE-waveguide show the EIT line-shapes.
|t2(x1, x2)|2 remains almost constant with increasing x̃,
and has a large magnitude for the driven 3LE. It shows
that the two transmitted photons are always bunched to-
gether at any distance separation. This may have signif-
icant practical application in quantum information pro-
cessing to create far separated entangled photon-pairs.
|t2(x1, x2)|2 starts to decay with increasing x̃ for a devi-
ation in energy of any of the two incident photons from
the resonance condition. |t2(x1, x2)|2 for a 2LE has com-
pletely different behavior at the TPR as shown in the
Fig.2(b). We find that the line-shape of |t2(x1, x2)|2 of
a driven 3LE starts to match with that of a 2LE as γ3

is increased from 0 to a finite value (see Fig.2(b)). In
Fig.2(c), we plot |t2(x1, x2)|2 and |r2(x1, x2)|2 for Ω 6= 0
when Ek = 2E2 but Ek1

6= Ek2
. These energies are

away from the resonances for both the 2LE- and the
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3LE-waveguide, and again the two-photon correlations
are similar in these systems for a relatively weaker driv-
ing field. Both |t2(x1, x2)|2 and |r2(x1, x2)|2 show oscil-
lations for large x̃, and become zero at the same values of
x̃. These oscillations are characteristics of 1D scattering
in the waveguide-emitter systems.

For a side-coupled emitter model, an expectation of the
difference of photon number between right-moving and
left-moving photons gives an estimate of total two-photon
reflection coefficient (or two-photon reflection current).
Total two-photon reflection current includes contribu-
tions of two reflected as well as one reflected plus one
transmitted photons. Physically this is much easier to
measure than t2, r2 and rt; one just needs to put a photo-
detector at the backward direction of the waveguide. We
define the two-photon reflection current as

I = −1

2

d

dt
(NR − NL) where Ni=R,L ≡

∫

dxa†
i (x)ai(x),

= − i

2
[H, NR − NL] =

iV

2
(a†

o(0)|1〉〈2| − |2〉〈1|ao(0)).(5)

The expectation of I in the full two-photon scattering
state has two parts, one is order of L and the other is
order of L0 [23, 24], where L is roughly the length of the
finite 1D waveguide. We find

〈I〉 =
[ iV L
32π2

ρk1

(

1 +
Ω

2Ξ
ρ̃k1

)(3

2
+

|τk2
|2

2

)

−
V τ∗

k1

16π

(Υ1ρk2

V

+
Υ2ρ̃k2

Ξ
− Υ1Ω

2

4Ξ

1

Ξ − Ek + α − iβ/2
(
ρk2

V
− 2ρ̃k2

Ω
)
)]

+ (1 ↔ 2) + H.c. (6)

By taking the limit Ω → 0 in Eq.6 we get the correspond-
ing current for a 2LE coupled to 1D waveguide, and the
term of order L for the 2LE-waveguide is just the contri-
bution from two noninteracting photons. But, we can not
separate the term of order L in Eq.6 for the driven 3LE as
a sum of the single-photon reflection coefficients Rk1

and
Rk2

. Therefore, the two-photon reflection current shows
one order of magnitude higher photon-photon correlation
for the driven 3LE compared to the 2LE case. We ob-
tain a renormalized two-photon reflection coefficient for
an average single photon from 〈I〉 after multiplying it by
π. We use L ≃ 2π for an infinite waveguide. We plot the
renormalized two-photon reflection coefficient for Ω = 0
(2LE) and Ω 6= 0 (3LE) in Fig.3. We find that the two-
photon correlation has lowered the otherwise smaller dip
in Rk at the TPR. Note that Rk does not vanish at the
TPR as we now use γ3 6= 0. Here we could not cal-
culate a two-photon transmission current directly. The
two-photon scattering in 1D induces inelastic scattering
[10, 11, 23] which enhances the effective value of γ2. In
the insets of Fig.3, we show that the peak of Tk and the
dip in Rk are respectively increased and lowered as γ2 is
increased. Thus, we expect by comparing the line-shapes
of the single-photon and the two-photon reflection coeffi-
cients that the two-photon transmission would be higher
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FIG. 3: Renormalized two-photon and single-photon reflec-
tion coefficients of a driven 3LE and a 2LE with E2 for ∆ =
0.056Γ, Ω = 0.033Γ, γ2 = 0.01Γ, γ3 = 0.001Γ, Γ/2π = 1.43
MHz, and Ek + ∆ = 2π GHz. The insets show the single-
photon reflection and transmission of a driven 3LE for differ-
ent γ2, and the other parameters are same as the main figure.

compared to the single-photon transmission Tk at the
TPR. Again, the effect of the two-photon scattering on
the reflection and the transmission coefficients is little bit
different for a strong driving field at γ3 = 0.

In conclusion, we have presented a detailed investiga-
tion on the two-photon correlation in the driven 3LE-
waveguide using an open system approach based on the
Bethe ansatz, and compared it with the 2LE-waveguide
system. Perceiving recent progress in experiments with a
single driven three-level atom in a cavity and free space,
we hope that the phenomena discussed here will be exper-
imentally observed in the near future. We plan to further
extend the present approach to different 3LE configura-
tions as well as four level systems in 1D waveguide for
studying entanglement of photons [25].
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