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Entanglement entropy appears as a central property of quantum systems in broad areas of physics.
However, its precise value is often sensitive to unknown microphysics, rendering it incalculable. By
considering parametric dependence on correlation length, we extract finite, calculable contributions
to the entanglement entropy for a scalar field between the interior and exterior of a spatial domain
of arbitrary shape. The leading term is proportional to the area of the dividing boundary; we
also extract finite subleading contributions for a field defined in the bulk interior of a waveguide in
3+1 dimensions, including terms proportional to the waveguide’s cross-sectional geometry; its area,
perimeter length, and integrated curvature. We also consider related quantities at criticality and
suggest a class of systems for which these contributions might be measurable.

PACS numbers:

Introduction: The quantum nature of matter is rarely
evident on macroscopic scales, often due to the decoher-
ence of excited states toward classical states. However,
for certain states, such as ground/vacuum states, their
quantum nature can appear, in principle, on macroscopic
scales. One of the most dramatic properties of quan-
tum matter is entanglement and its associated entropy,
which, if observed on meso or macroscopic scales, would
be of broad interest. To define this entropy, consider
a quantum system whose degrees of freedom can be di-
vided into two parts in space A, A (see Fig. 1). The
geometric or entanglement entropy is defined by the von
Neumann formula S = −TrA(ρA ln ρA), where ρA = TrAρ
is the reduced density matrix of the subsystem A. This
quantity has featured in recent investigations in several
domains including quantum field theory, condensed mat-
ter physics, quantum computing, and black hole physics.
It is a measure of one’s ignorance of the full system due
to quantum entanglement between the degrees of freedom
in the subsystem A and its complement A.

For d+1-dimensional systems with local dynamics the
entanglement entropy typically obeys an area law S ∼
Ad−1/ε

d−1 for d ≥ 2, where Ad−1 is the d−1-dimensional
area of the boundary dividing the subsystem from its
complement [1]. Various discussions of this area law have
been made in the literature, including extensive study
of bosonic systems in Ref. [2] and fermionic systems in
Ref. [3] (the latter can involve extra logarithmic factors).
Without further refinement the constant of proportional-
ity is usually ill-defined, as it depends sensitively on an
ultraviolet cutoff ε. By contrast, the entanglement en-
tropy of 1+1-dimensional systems is well-defined, since
the ε dependence is only logarithmic. For example, the
entanglement entropy between a pair of half spaces of a
1+1-dimensional conformal field theory (CFT) at corre-

lation length ξ was shown to be S = c/6 ln ξ/ε, where
c is the central charge of the CFT [4]; here rescaling of
ε does not alter the coefficient of ln ξ. This raises the
challenge, to define and calculate unambiguous, cutoff-
independent contributions to the entanglement entropy
in d ≥ 2 dimensions.

In this Letter we do just that, albeit in the very spe-
cial case of free field theory. We place the system in its
ground state in order to isolate the entanglement entropy.
Of course real systems are normally at finite temperature,
which leads to a volume contribution to entropy, but this
is not our focus. Instead our focus is toward gaining
insight into novel quantum phenomena at zero tempera-
ture, such as quantum phase transitions. For a free scalar
field in d+1-dimensions at finite correlation length ξ (i.e.,
mass µ = 1/ξ), we show that in addition to the divergent
terms, such as S ∼ Ad−1/ε

d−1, there is also a finite area
law contribution for general smooth geometries

∆S = γd
Ad−1

ξd−1
ln
ξ

ε
, for d odd,

∆S = γd
Ad−1

ξd−1
, for d even, (1)

where γd ≡ (−1)
d−1
2 [6 (4π)

d−1
2 ((d − 1)/2)!]−1 for d odd

and γd ≡ (−1)d/2[12 (2π)(d−2)/2(d−1)!!]−1 for d even. For
a waveguide geometry with specified boundary conditions
(see Fig. 1, left panel) we define and calculate additional
power law corrections using heat kernel methods. Those
methods allow us to express the entropy as an expansion
in terms of the geometric properties of the waveguide’s
cross-section. We also consider a massless field (ξ →∞)
and define and calculate unambiguous finite terms for the
interval in a waveguide (see Fig. 1, right panel).

The area law for general smooth geometries in the mas-
sive case, as well as the waveguide expansion for both the
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massive and massless cases, extend the results of Ref. [4].
Heat Kernel Method: The replica trick is a powerful

method for computing the entanglement entropy. Since
the logarithm that appears in the definition of that quan-
tity is awkward to compute directly, one exploits the iden-
itity S = −TrA(ρA ln ρA) =

(
− d
dn + 1

)
ln TrρnA|n=1 and

the strategy to compute TrρnA for integer n and use an-
alytic continuation. (A similar analytic continuation is
known to fail for spin glasses [5], and we suspect that
it can fail for the entanglement entropy in complicated
quantum field theories, but it should be safe for the very
simple field theories considered here.) Consider, for ex-
ample, a field theory in 1 spatial dimension. In that case
the quantity TrρnA is a trace over an n-sheeted Riemann
surface with cut along the subsystem of interest A. If the
subsystem A is a half space, then as explained in Ref. [4]
TrρnA can be identified with the partition function Zδ on
a cone of deficit angle δ = 2π(1−n), and the entropy can
be recast as

S =
(

2π
d

dδ
+ 1
)

lnZδ
∣∣∣
δ=0

(2)

which can be calculated analytically.
Now consider the waveguide geometry shown in Fig. 1,

left panel. The field lives in the bulk interior of the waveg-
uide, satisfying boundary conditions on its surface. For
this geometry we formulate a Euclidean field theory on
the space Cδ×Md−1, where Cδ is a 2-dimensional cone of
radius R (infrared cutoff) and deficit angle δ, and Md−1

is the (d− 1)-dimensional cross-section of the waveguide.
The cone’s radius (R → ∞) corresponds to the physi-
cal region in space we are tracing over and the angular
direction is associated with a geometric “temperature”
(imaginary time) direction in the Euclidean path inte-
gral. Let Zδ be the partition function for a field in its
ground state defined on this space. For a free scalar field
of inverse mass ξ, the partition function is Gaussian

lnZδ = −1
2

ln det
(
−∆ + ξ−2

)
, (3)

where ∆ is the Laplacian satisfying the appropriate
boundary conditions on Cδ ×Md−1.

Now let us introduce the heat kernel for the Laplacian
operator ζ(t) ≡ tr

(
et∆
)
. The trace is defined by im-

posing Dirichlet or Neumann boundary conditions on the
waveguide ∂Md−1 and Dirichlet boundary conditions on
∂Cδ. This allows us to rewrite the partition function Zδ
and hence the entropy S in terms of the heat kernel:

S =
1
2

∫ ∞
0

dt

t

(
2π

d

dδ
+ 1
)
ζ(t)e−t/ξ

2
∣∣∣
δ=0

. (4)
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FIG. 1: Waveguide geometry in d = 3. Left: Region A is a
half space at finite correlation length ξ. Right: Region A is
an interval of length L at criticality.

Since the manifold for the Euclidean field theory for the
waveguide is a direct product Cδ×Md−1, the heat kernel
factorizes as ζ(t) = ζδ(t) ζd−1(t). Thus our problem sim-
plifies into that of obtaining expansions for two separate
heat kernels: One for the 2-dimensional cone ζδ(t); and
the other for the (d− 1)-dimensional cross-section of the
waveguide ζd−1(t). The heat kernel for the cone has the
form [6]

ζδ(t) =
1
12

(
2π

2π − δ
− 2π − δ

2π

)
+ . . . (5)

where the dots represent terms that either are annihilated
by the 2π d

dδ +1|δ=0 operator or else vanish in the R→∞
limit, and therefore do not contribute to the entropy. We
thereby obtain

S =
1
12

∫ ∞
0

dt

t
ζd−1(t)e−t/ξ

2
(6)

for the entanglement entropy for waveguide geometry in d
spatial dimensions traced over half-space. Evidently the
entropy is determined by the geometry of the waveguide
cross-section, through its heat kernel ζd−1(t).

Waveguide Cross-Section: The heat kernel for a closed
domain satisfying either Dirichlet (η = −1) or Neumann
(η = +1) boundary conditions in dimensions 0, 1, and 2
has the following small t expansion [7]:

ζ0(t) = 1,

ζ1(t) =
a

2
√
π t

+
η

2
+ . . . ,

ζ2(t) =
A

4π t
+

η P

8
√
π t

+ χ+ . . . . (7)

Here a is the cross-sectional length of a waveguide in 2-
dimensions, while A, P , and χ is the cross-sectional area,
perimeter length, and integrated curvature of a waveguide
in 3-dimensions, respectively. (This expansion is also of
use in computations of the Casimir effect between two
partitions in a waveguide, see Ref. [9].) The curvature
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term for an arbitrary piecewise smooth 2-dimensional
cross-section is given by

χ =
∑
i

1
24

(
π

αi
− αi

π

)
+
∑
j

1
12π

∫
γj

κ(γj)dγj , (8)

where αi is the interior angle of any sharp corners and
κ(γj) is the curvature of any smooth pieces. For example,
χ = 1/6 for any smooth shape (such as a circle) and
χ = (n− 1)/(n− 2)/6 for any n-sided polygonal (so χ =
1/4 for a square). This result differs from Ref. [8] where
the curvature piece was argued to be proportional to the
number of corners in an arbitrary shape.

Regularization; Finite Terms: Direct insertion of the
heat kernel expansion into eq. (6) for the entanglement
entropy leads to divergences as t → 0+. These diver-
gences are associated with the behavior of the theory at
arbitrarily short distances. As is known, these lead to
infinities that cannot be renormalized away: logarithmic
in 1 dimension, linear in 2 dimensions, and quadratic in
3 dimensions [1]. There are various ways to regulate the
divergences. For instance, we could impose a hard cutoff
on the t integral and integrate from t = tc = ε2 to t =∞,
and find terms that only diverge in the ε→ 0 limit. An-
other procedure is to use Pauli-Villars regularization by
subtracting off terms with µ replaced by Λ and taking
Λ large. This is perhaps more appealing as it respects
the underlying geometry. However, either approach gives
results containing the cutoff parameters ε or Λ.

Fortunately, by returning to eq. (6) we can identify cut-
off independent dependence of the entropy on the inverse
correlation length µ = 1/ξ. In general, the leading order
behavior of the heat kernel as t→ 0 is

ζd−1(t) =
α

t(d−1)/2
+ . . . (9)

where α = Ad−1/(4π)(d−1)/2 is a constant. Inserting this
into eq. (6) reveals that the integrand has the leading
order behavior ∼ 1/t(d+1)/2; giving a divergence of order
d − 1 as t → 0+ with respect to a cutoff, say ε, defined
through tc = ε2. (For d − 1 = 0 there is a logarithmic
divergence.) This singularity can be regulated by taking
some number of partial derivatives of the entropy with
respect to the correlation length ξ, as that procedure pulls
down factors of t from the exponential exp(−t/ξ2). In
particular by taking

k ≡ Floor
[
d+ 1

2

]
(10)

derivatives of S with respect to ξ−2 gives a manifestly
finite integral whose value is independent of any cutoff

(note k = 1, 1, 2 for d = 1, 2, 3). Hence we define a di-
mensionless, cutoff-independent quantity through

Sξ ≡ (−ξ−2)k
∂kS

∂(ξ−2)k
. (11)

Using eqs. (6) and (7) and integrating t, we obtain

Sξ =
1
12
, for d = 1,

Sξ =
1
24
a

ξ
+

η

24
+ . . . , for d = 2,

Sξ =
1

48π
A

ξ2
+

η

192
P

ξ
+

χ

12
+ . . . , for d = 3. (12)

For d = 1 this result is exact [4]. For d ≥ 2 this expansion
is only valid for a� ξ, where a is a typical cross-sectional
length. The third term is topological for d = 3. Note that
by taking the appropriate number of anti-derivatives it
is straightforward to isolate cutoff-independent contribu-
tions to the entropy itself. (We report additional exact
results in the arXiv version of this Letter.)

General Geometries: Although the sub-leading terms
in eq. (12) are specific to a waveguide geometry, the lead-
ing terms have a meaning for arbitrary geometries. In
particular, for any boundary in 1 dimension we pick up
a contribution of 1/12 to Sξ, as is known [10]. For closed
geometries in 2 dimensions, the leading contribution is
Sξ = P/(24ξ), where P is the perimeter length. For
closed geometries in 3 dimensions, the leading contribu-
tion is Sξ = A/(48πξ2). By integrating up these results,
we recover the d = 1, 2, 3 cases in eq. (1). Furthermore,
using the heat kernel in arbitrary dimensions (9) we re-
cover the general result for arbitrary dimensions.

This general result differs from estimates made in Sec-
tion 7 of Ref. [11], where the corresponding term in the
entropy did not appear. We have checked our result nu-
merically for the cases of spheres and cylinders, finding
excellent agreement. In fact our numerics suggests that
the area term is the only polynomial contribution to Sξ
for large A/ξ2. We can understand that heuristically, as
follows: In the regime ξ � a, where a is a typical length
scale of curvature of the boundary, the correlations re-
quired to feel the curvature are exponentially suppressed.
On the other hand if the boundary contains sharp corners,
we expect power law corrections to appear. (For related
discussion, see [12].) We have verified this numerically
for squares.

Massless Case - Finite Interval: The previous expan-
sion requires the field theory to be massive. Let us turn
now to the critical case (ξ → ∞). To use our strategy
to define finite entropy quantities we need a length scale,
which will now come from considering a finite interval of
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length L, as in Fig. 1, right panel. We can define the
cutoff-independent quantity:

SL ≡ L
dS

dL
. (13)

The small t heat kernel expansion of eq. (5) is insuf-
ficient here because we must know the form of ζδ(t) not
only for t . L2, but also for t & L2 where t is large.
In general the full form of ζδ(t) is difficult to calculate.
However, we do not need ζδ(t) for arbitrary δ, but only
the specific limit indicated in eq. (4). There are powerful
tools available for this, as we now explain. The derivative
of the entanglement entropy can be written in terms of
an object defined for 2d conformal field theories known
as the c-function, denoted C. It is related to the inverse
Laplace transform of 1

12 (2π d
dδ + 1)ζδ(t)|δ=0. Convolving

with the transverse density of states, we have

SL =
∫ ∞

0

dE C
(
L
√
E
)
ρd−1(E). (14)

The c-function C has been studied intensely, see Ref. [13].
It is known that C(0) = 1/3 and that C is monotonically
decreasing. Using the heat kernel expansion (7), we can
inverse Laplace transform to obtain an expansion for the
density of states ρd−1(E). The quantity SL can then be
expressed in terms of a few integrals of C, which have
been computed numerically. We find

SL =
1
3
, for d = 1,

SL = k1
a

L
+
η

6
+ . . . , for d = 2,

SL = k2
A

L2
+
η k1

4
P

L
+
χ

3
+ . . . , for d = 3. (15)

Here k1 ≡ 1
π

∫∞
0
dxC(x) and k2 ≡ 1

2π

∫∞
0
dxxC(x). The

numerical values are: k1 ≈ 0.04 and k2 ≈ 0.01 [11]. For
d ≥ 2 this expansion is valid for a� L, analogous to the
expansion in (12) which was valid for a� ξ.

Discussion: (i) We have shown that arbitrary shaped
domains have an area term, given by eq. (1), with a cutoff
independent piece emerging after taking k = Floor[(d +
1)/2] derivatives of S with respect to ξ−2. For a waveg-
uide geometry we used our construction to obtain an
asymptotic expansion of the entropy for small values of
the correlation length to cross-section width ratio. For
arbitrary smooth manifolds the leading order area law
should be applicable. In contrast to the 1-dimensional
case, with Sξ = 1/12, these higher-dimensional entropies
can be large numerically. It would be interesting to ex-
tend our results to fields involving alternative dispersion
relations, fermions, and interacting field theories.

(ii) Measurement of entanglement entropy of the kind
discussed above, in the massive, or non-critical, case, re-
quires changing the correlation length ξ in such a way
that the microphysics is only weakly affected, and mea-
suring the corresponding change in entropy ∆S (leav-
ing the cutoff-dependent pieces, such as Ad−1/ε

d−1, un-
affected). Though fluctuations of the vacuum state of
a relativistic QFT may not be directly measurable [14],
we can turn to condensed matter systems. Consider, for
example, magnetic media. In the absence of an exter-
nal magnetic field, there is a massless mode; but for an
externally applied B-field, φ acquires an adjustable effec-
tive mass µ = 1/ξ. In the regime: ε2 � ξ2 � A, where ε
is the inter-spin spacing, the area law should be an ade-
quate description. Another possibility would be to work
near, but not too near, a quantum phase transition; then
the correlation length could be varied in a controlled way.

(iii) A proposal for obtaining the entanglement en-
tropy experimentally by measuring current fluctuations
in 1-dimensional electron systems has been presented
in Ref. [15]. Extending such proposals to 3-dimensions
would be of great interest.
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