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We study the quench dynamics of a two-component ultracold Fermi gas from the weak into the strong inter-
action regime, where the short time dynamics are governed by the exponential growth rate of unstable collective
modes. We obtain an effective interaction that takes into account both Pauli blocking and the energy depen-
dence of the scattering amplitude near a Feshbach resonance. Using this interaction we analyze the competing
instabilities towards Stoner ferromagnetism and pairing.

Ferromagnetism in itinerant fermions is a prime example
of a strongly interacting system. Most theoretical treatments
rely on a mean-field Stoner criterion [1], but whether this ar-
gument applies beyond mean-field remains an open problem.
It is known that the existence of the Stoner instability is very
sensitive to the details of band structure and interactions [2–
4]. However, how to account for these details in realistic sys-
tems remains poorly understood. Following theoretical pro-
posals [5], the MIT group made use of the tunability [6] and
slow time scales [7–10] of ultracold atomic systems to study
the Stoner instability [11]. Signatures compatible with ferro-
magnetism, as understood from mean-field theory [12], were
observed in experiments: a maximum in cloud size, a mini-
mum in kinetic energy and a maximum in atomic losses at the
transition. However, no magnetic domains were resolved.

An important aspect of the MIT experiments is that the
Fermi gas was prepared with weak interactions after which the
interactions were ramped to the strongly (repulsive) regime.
Dynamic rather than adiabatic preparation was used to avoid
production of molecules. This raises the question of what are
the dominant instabilities of the Fermi gas in the vicinity of a
Feshbach resonance.

Naively, one expects that on the BEC-side, molecule pro-
duction is slow, as it requires a three-body process. Therefore,
the instability towards Stoner ferromagnetism should domi-
nate over the instability toward molecule production. Like-
wise, one expects that quenches to the attractive (BCS) regime
always yield a pairing instability, whereas quenches to the re-
pulsive (BEC) regime may lead to a ferromagnetic instability.

In this Letter, we argue that this picture, which was used to
interpret the MIT experiments, is incomplete. Near the Fes-
hbach resonance, even on the BEC side, pair production re-
mains a fast two-body process as long as the Fermi sea can
absorb the molecular binding energy. As a result, near the
Feshbach resonance, both on the BEC and the BCS side, the
pairing and the Stoner instabilities compete directly. We now
discuss these instabilities and their competition in detail.

We start by describing the inter-atomic interactions. A Fes-
hbach resonance enables tunable interactions between ultra-
cold atoms by coupling the collision partners to a molecular
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FIG. 1: Growth rate of the pairing and Stoner ferromagnetic insta-
bilities after a quench as a function of the final interaction strength
1/kF a. Final interactions with negative (positive) values of 1/kF a
correspond to the BCS (BEC) side of the Feshbach resonance. The
Stoner instability simultaneously occurs in multiple channels. The
most unstable channel is indicated by the solid red line, the others
by dashed red lines. The “RPA Stoner” instability corresponds to
the RPA result with bare interactions (see text and Ref. [13]). Inset:
Schematic diagram of the pair creation process showing the binding
energy (spring) being absorbed by the Fermi sea (arrows).

state with different magnetic moment. For broad resonances,
where the coupling is much larger than the Fermi energy, this
can be modelled by a single collision channel that supports
one shallow bound state [14]. An often used, but pathological
choice, is to describe repulsive interactions with a hard-sphere
pseudo-potential. Although at low energies the scattering am-
plitude from the hard-sphere potential and the T-matrix match,
at higher energies comparable to the molecular binding en-
ergy, they do not [15]. In the strong interaction Stoner-regime,
the Fermi energy is comparable to the binding energy of a
molecule in vacuum, precluding the use of the hard-sphere
potential.

In light of this remark, we study the initial dynamics of the
collective modes of a fermionic system after a sudden quench,
taking the Cooperon (full T-matrix and Pauli blocking) into
account. We focus on the case of a sudden quench, as it is
simpler and captures the essential physics of the instability of
the Fermi surface. Our main findings are summarized in Fig. 1
and are: (1) With the full T-matrix the Stoner instability sur-
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vives with a finite growth rate in the range −0.2 . kFa . 1,
where a is the scattering length and kF the Fermi momen-
tum. In contrast, bare interactions [13] result in an unphysi-
cal divergence of the growth rate at unitarity and no magnetic
instabilities on the BCS side (see Fig. 1). (2) The pairing in-
stability persists on the BEC side, where it competes with the
Stoner instability. (3) Within our approximations, the pairing
instability is always stronger.

At first sight, the survival of the pairing and Stoner instabil-
ities on the wrong side of the resonance is remarkable. How-
ever, both can be understood by taking into account the pres-
ence of the Fermi sea. On the BEC side, due to Pauli blocking,
the binding energy of the pair-like molecule can be absorbed
by the two holes that are left behind (see the inset of Fig. 1).
Thus, the two-body pairing process becomes forbidden when
the binding energy ∼ 1/ma2 exceeds the maximum energy
that can be absorbed by the holes ∼ k2

F /m (m is the fermion
mass, and throughout this Letter we use the units in which
~ = 1). On the BCS side, although interactions at low ener-
gies are indeed attractive, the same is not true at high energies.
As the Stoner instability involves all scattering energies up to
the Fermi energy, it can persist on the BCS side.

Formalism – We consider a system of interacting fermions
described by the Hamiltonian:

H =
∑
k,σ

ξkσc
†
kσckσ+

∫
ddrU(t, r− r′)c†r↑c

†
r′↓cr′↓cr↑, (1)

where c†σ(cσ) are the fermion creation (annihilation) operators
with spin σ, ξkσ = k2/2m − µσ , µσ are the chemical poten-
tials, and U(t, r − r′) is the time dependent pseudo-potential
that describes the inter-atomic interaction. We focus on the
instantaneous quench limit, in which the coupling U changes
from a negligible initial value Ui to a final value Uf at time
t = 0. In this limit, we can describe short time dynamics of
a collective mode at momentum q using the corresponding
susceptibility, χq(ωq;Uf ), evaluated with final interactions
but initial fermionic configuration [13, 16]. In particular, if
χq(ωq;Uf ) has poles at ωq = Ωq + i∆q in the upper half
of the complex plane, then fluctuations that occur after the
quench will grow exponentially in time. Next, we obtain a
universal description of interactions due to U(r) by modify-
ing the T-matrix to take into account Pauli blocking, and apply
these ideas to the Stoner and BCS instabilities.

Cooperon – In this section, we obtain the Cooperon, C, i.e.
the T-matrix that takes into account Pauli blocking of states by
the Fermi sea (see Fig. 3). In the center of mass frame in vac-
uum, the scattering of a pair of particles with identical masses
m near a wide Feshbach resonance is described by the T-

matrix (scattering amplitude) τ(E) = m
4π

(
1
a + i

√
mE

)−1

,
where, E is the energy of the scattered particles and a is the
scattering length associated with the pseudo-potential U(r −
r′) that appears in Eq. 1. As the Fermi sea breaks transla-
tional invariance, we work in the coordinates where the sea is
at rest. Comparing the Lippmann-Schwinger equations with
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FIG. 2: Pairing instability. (a) “Binding energy” of a Feshbach
molecule in vacuum and in the presence of a Fermi sea (relative to
2εF ) as a function of interaction strength, corresponding to the real
part of the T-matrix pole frequency Ωq=0 = Re[ωq=0]. Pauli block-
ing by the Fermi sea results in stronger binding across the resonance.
The kink occurs when the pair becomes stable. (b) Dependence of
pairing rate on momentum for various values of kF a. q = 0 is al-
ways most unstable wavevector. (c) Pairing rate and (d) rate (in time)
of change of kinetic energy as a function of interaction strength on
the BEC side for various temperatures [T = 0 (purple, solid), 0.12,
0.22, 0.5, 0.66, 0.75TF (red, dashed)]. Temperature is more effec-
tive at suppressing pair production at larger values of kfa as the bind-
ing energy is smaller, thus the peaks in (c) and (d) become sharper
at higher temperatures. The peaks in growth rate and kinetic energy
rate qualitatively match experiments [11].

and without a Fermi sea (in analogy to Ref. [17]) we obtain

C−1(E,q) = τ−1
(
E + 2εf − q2/4m

)
+
∫

d3k
(2π)3

nF (q
2 + k) + nF (q

2 − k)
E − ε q

2 +k − ε q
2−k

. (2)

Here, E and q are the center of mass frequency and momen-
tum of the pair, εf is the Fermi energy, nF (k) is the Fermi
function, and εk = k2/2m− εf .

Pairing instability – The Cooperon is related to the pair-
ing susceptibility via χpair(~q) =

∫
d~k1 d~k2G(~k1)G(~q −

~k1)C(~q)G(~k2)G(~q − ~k2), where ~q stands for the external
frequency and momentum vector {E,q}, d~k1 stands for
dω1 dk1/(2π)4, andG(~k1) = G(ω1,k1) is the bare fermionic
Green function in the non-interacting Fermi sea correspond-
ing to the initial state. The pole structure of χpair(~q) match
that of C(~q), which we now investigate.

We begin our analysis with the T-matrix in vacuum. For
each value of a, τ(E,q) has a line of poles on the BEC side
located at ωq = −1/ma2 + mq2/4, corresponding to the
binding energy of a Feshbach molecule with center of mass
momentum q. As a consequence of energy and momentum
conservation the pole frequency is real, indicating that a two-
body process in vacuum cannot produce a Feshbach molecule.
In the presence of a Fermi sea, the states below the Fermi
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FIG. 3: Diagrams for the vertex function Γ and Cooperon C. Solid
lines represent bare fermion propagators, dashed lines interactions,
gray lines external legs, and wavy lines external sources.

surface are Pauli-blocked, shifting the poles of the Cooperon
relative to the T-matrix in two ways. First, the real part of
the pole Ωq , which would correspond to the binding energy
of a pair in the absence of an imaginary part, uniformly shifts
down (see Fig. 2a). This shift is a result of Pauli blocking [18],
and indicates an appearance of a paired state on the BCS side
as well as stronger binding of the pair on the BEC side. Sec-
ond, in the range −∞ < 1/kFa . 1.1 the pole acquires
a positive imaginary part ∆q that corresponds to the growth
rate of the pairing instability. As depicted in Fig. 1, ∆q=0

increases exponentially ∆q=0 ≈ 8εF eπ/2kF a−2 as one ap-
proaches the Feshbach resonance from the BCS side, i.e. the
growth rate of the BCS pairing is equal to the BCS gap at
equilibrium [18]. On the BEC side, the growth rate continues
to increase, reaching a maximum at kFa ≈ 2, and finally de-
creasing to zero at kFa ≈ 1.1, at which point the Fermi sea
can no longer absorb the energy of the Feshbach molecule in
a two-body process. Deeper in the BEC regime pairing takes
place via the more conventional three-body process and would
round the pairing instability curve near kFa ≈ 1.1 in Fig. 1.
We comment that pairing at finite q is always slower than at
q = 0, with ∆q monotonically decreasing to zero at q = qcut
(see Fig. 2b). Throughout the resonance the approximation
qcut ≈ (

√
3/2)(∆q=0/εF )kF works reasonably well except

in the vicinity of kfa ∼ 2 where qcut reaches the maximal
value for a two-body process of 2kf .

Stoner instability – One can expect that a rapid quench to
the BEC side of the resonance, where interactions are strongly
repulsive, results in an instability towards Stoner ferromag-
netism. We shall assume that right after the quench, the atoms
are still in the free Fermi sea initial state and the Stoner insta-
bility is competing with the pairing instability. Our goal is to
compute the ferromagnetic susceptibility using the Cooperon
to describe effective inter-atomic interactions, which allows
us to include three important aspects of the problem: energy
dependence of the scattering amplitude near the Feshbach res-
onance; Pauli blocking, which renormalizes the energy of the
virtual two particle bound states involved in scattering; and
Kanamori-like many-body screening [4].

Technically, we compute the vertex function Γω,q(ω1,k1),
which is related to the susceptibility via χFM(~q) =∫
d~k1G(~q + ~k1)G(~k1) Γ~q(~k1). Replacing the point contact

interaction vertex by the Cooperon in an RPA type resumma-
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FIG. 4: Properties of growing collective modes in the Stoner insta-
bility in 3D. (a) Growth rate of the most unstable mode ∆q as a
function of wavevector q for T = 0 and 1/kF a = 0.85 (top line),
0.86, 0.87, ..., 0.93 (bottom line). (b) The most unstable wavevec-
tor qmax (blue) and the corresponding growth rate ∆max (red) vs.
1/kF a. A fit to the mean-field critical theory (ν = 1/2, z = 3)
is shown with black lines [19]. (c) Details of the critical behavior
of qmax and ∆max as a function of distance from the transition point
u = (1/kF a)c − (1/kF a), (1/kF a)c ≈ 0.94.

tion of the vertex function (see Fig. 3 and Ref. [4]) we obtain

Γ~q(~k1) = 1 +
∫
d~k2 Γ~q(~k2)C(~k1 + ~k2 + ~q)G(~k2 + ~q)G(~k2).

To compute the vertex function, a number of approxima-
tions are unavoidable. First, we assume that q and ω are
both small, which is valid in the vicinity of the Stoner tran-
sition. Second, in the spirit of Fermi liquid theory, we as-
sume that the most important poles come from the Green func-
tions, and hence we replace G(k2 + q, ω2 + ω)G(k2, ω) →
2π
vF

q·k2
mω−q·k2

δ(ω)δ(|k2| − kF ) [18]. We then obtain

Γq,ω(k̂1)=1+
∫
dk̂2

4π
Γq,ω(k̂2)C(k̂1+k̂2, ω)Iq,ω(k̂2), (3)

Iq,ω(k̂2) =
∫
k2
2dk2

2π2

nF (k2 − q/2)− nF (k2 + q/2)
ω − εk2−q/2 + εk2+q/2

, (4)

and k̂ indicates a vector on the Fermi surface. The approx-
imation involves that we can replace k1 and k2 by k̂1 and
k̂2 when evaluating the Cooperon, i.e., that the Cooperon
changes slowly compared to the Green functions. This ap-
proximation captures the most singular contributions to the
vertex function in the entire parameter range. For weak in-
teractions, where the Cooperon is weakly momentum and fre-
quency dependent, our approximation reduces to the standard
RPA [13, 18].

In the range −0.2 . 1/kFa . 1.0, there is one or more
lines of complex poles with a positive imaginary part ∆q,
which corresponds to the Stoner instability in different chan-
nels (a combination of momentum and orbital moment). As
q → 0, the different instabilities can be identified as different
angular momentum channels. Since magnetization is a con-
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served order parameter, in each channel ∆q grows linearly
for small q. At large q the cost of bending the order parame-
ter results in the vanishing of ∆q for q > qcut. In between,
∆q reaches its maximum value ∆max at a wave-vector qmax

which corresponds to the fastest growing mode (see Fig. 4).
Discussion – The growth rates of the pairing instability

∆BCS
q=0 and the ferromagnetic instabilities in the various chan-

nels ∆FM
max are compared across the Feshbach resonance in

Fig. 1. We see that (1) the Cooperon suppresses the growth
rate of the ferromagnetic instability but does not eliminate it,
(2) the pairing and ferromagnetic instabilities compete over a
wide range of interaction strength on both sides of the reso-
nance, and (3) the pairing instability is always dominant. Our
results suggest that even if there is a metastable ferromag-
netic state [15], it probably cannot be reached dynamically
starting from a balanced gas. However, on short timescales
∼
(
∆FM

max

)−1 ∼
(
∆BCS
q=0

)−1
, both pairing and magnetic corre-

lations develop and may be detectable experimentally.
For the case of a finite rate ramp, we should integrate the

instantaneous instability rate [13] (i.e. for the order parameter
Φq(t) we must solve Φ̇q(t) = ∆q(t)Φ(t)). As the pairing
instability dominates over the Stoner instability over the entire
parameter range, the qualitative results will not be affected.

Comparison with experiment – We underline that the ex-
perimentally measured atom loss rate is not the loss rate of
atoms out of the trap but instead the loss rate to pair forma-
tion. The lack of experimental observation of ferromagnetic
domain structures together with the observation of pairing
supports our qualitative conclusion that the pairing instability
prevails over the Ferromagnetic instability. Quantitatively, the
maximum of the pairing instability in the vicinity of kFa ≈ 2
but not the onset of the Stoner instability at kFa ≈ 1 matches
the location of the ”transition” found experimentally [11]. The
shape of the pairing rate curve (see Fig. 2c), especially at
higher temperatures, looks qualitatively similar to the atom
loss rate found experimentally at lower temperatures [20].

A fast ramp-down of the magnetic field was used to con-
vert weakly bound molecules into strongly bound molecules.
The kinetic energy of the remaining atoms was measured and
showed a minimum at kFa ≈ 2 [11], which can be qual-
itatively understood within our analysis of the pairing in-
stability. The energy of each molecule produced is given
by ∼ Re[ωq] (see Fig. 2a). The molecular energy corre-
sponds to the kinetic energy of the fermions removed from
the Fermi sea, measured with respect to the Fermi energy.
Thus the rate of kinetic energy change of “unpaired” atoms
is ∼ (Re[ωq] − 2εF ) × Im[ωq=0] (see Fig. 2d). We find that
the location of both the minimum in the kinetic energy and
maximum in the pairing rate agree with Ref. [11].
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