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Abstract

We provide a simple proof that graphs in a general class of self-similar networks have zero

percolation threshold. The considered self-similar networks include random scale-free graphs with

given expected node degrees and zero clustering, scale-free graphs with finite clustering and metric

structure, growing scale-free networks, and many real networks. The proof and the derivation of

the giant component size do not require the assumption that networks are treelike. Our results rely

only on the observation that self-similar networks possess a hierarchy of nested subgraphs whose

average degree grows with their depth in the hierarchy. We conjecture that this property is pivotal

for percolation in networks.
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Percolation is a fundamental phenomenon in nature. Recent triggering developments

in percolation theory [1] open new perspectives in many key areas of statistical mechanics

and quantum field theory [2]. In statistical mechanics of complex networks, the percolation

properties of a network determine its robustness with respect to structural damage, and

dictate how emergent phenomena depend on the network structure [3]. Large clusters of

connected nodes emerge above a critical value of some network parameter, e.g., the average

degree; below the threshold, networks decompose into a myriad of small components whose

sizes typically follow exponential or power-law distributions for equilibrium and growing

networks, respectively [3]. The percolation threshold can be zero, meaning that networks

are always in the percolated phase. A classic example is random scale-free networks with

the power-law degree distribution exponent γ lying between 2 and 3 [4, 5]. The value of the

percolation threshold, the size of the giant component above the threshold, and the specifics

of the percolation transition strongly depend on fine details of the network topology [3].

This dependency hinders attempts to define percolation universality classes, even though

some networks show some degree of percolation universality [6].

This problem is aggravated by difficulties in the analytic treatment of percolation proper-

ties for networks with strong clustering. A majority of the obtained analytic results use the

generating function formalism based on the assumption that networks are locally treelike [7].

This assumption allows one to employ convenient tools from the theory of random branching

processes. The assumed absence of loops implies, in particular, that clustering is zero in

the thermodynamic limit. This zero-clustering approximation is valid for weakly clustered

networks where triangles do not overlap, but it is invalid for networks with strong clustering

and overlapping triangles observed in many real systems [8]. Noticeably, the exact results

derived for some network models with clustering can be mapped to treelike zero-clustering

graphs after appropriate transformations [9].

In this Letter, we provide a remarkably simple rigorous proof for the absence of a perco-

lation threshold in a general class of self-similar networks. The proof does not rely on the

treelike assumption or on generating functions. It does not depend on whether a network is

weakly or strongly clustered, and it applies equally well to equilibrium or non-equilibrium

networks. The proof relies only on network self-similarity, defined as statistical invariance

of a hierarchy of nested subgraphs with respect to a network renormalization procedure.

The percolation threshold is zero as soon as the average degree in subgraphs is a growing
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function of their depth in the hierarchy—a property characterizing many real networks. We

also calculate analytically the size of the giant component, supporting all the results by

large-scale numerical simulations.

Let G({α}) be an ensemble of sparse graphs in the thermodynamic limit, where {α}

is the set of model parameters. In the case of classical random graphs, for example, set

{α} is just the average degree 〈k〉. Consider a transformation rule T that for each graph

G ∈ G({α}) selects one of G’s subgraphs. Denote the ensemble of these subgraphs by

GT ({α}). The ensemble G({α}) is called self-similar with respect to the transformation rule

T if the transformed ensemble is the same as the original one except for some transformation

of the model parameters,

GT ({α}) = G({αT}). (1)

In what follows we describe three general types of graphs to which this definition applies. The

first two types are equilibrium random scale-free graph ensembles belonging to a general class

of network models with hidden variables [10]. The third one is a non-equilibrium ensemble

of growing networks.

Type I: The graphs in this ensemble are constructed by assigning to each node a hidden

variable κ drawn from the power-law probability density ρ(κ) = (γ − 1)κγ−1
0 κ−γ. Without

loss of generality, κ0 can be selected such that κ ≥ κ0 is the expected degree of nodes with

hidden variable κ, so that the degree distribution scales as a power law with exponent γ.

Each pair of nodes with expected degrees κ and κ′ is then connected with probability

r(κ, κ′) = f(µκκ′), (2)

where constant µ fixes the average degree 〈k〉 in the constructed graphs, and function f(x) ≤

1 is an arbitrary analytic function with f(0) = 0. This type of graphs includes as particular

cases the maximally random graphs with a given expected degree sequence [11], and random

graphs with arbitrary structural correlations [12]. In the former case,

f(x) =
1

1 + 1/x
. (3)

Clustering vanishes in the thermodynamic limit, and therefore the treelike assumption holds.

Type II: Besides having assigned expected degrees κ as before, nodes in this type of

graphs are also uniformly distributed in a homogeneous and isotropic D-dimensional metric

space [13]. Here, for concreteness, we consider a circle of radius R with a constant density
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of nodes δ = N/(2πR), although all the following results can be extended to an arbitrary

dimension. The connection probability between a pair of nodes with hidden variables κ and

κ′ separated by distance d = (π − |π − |θ − θ′||)R on the circle (θ’s are the node angular

coordinates) must be of the form

r(κ, θ;κ′, θ′) = h

(
d

µκκ′

)
, (4)

where function h must be integrable. These graphs have the same degree distribution as

the type I graphs, but clustering is finite in the thermodynamic limit, thanks to the triangle

inequality in the underlying metric space [13]. Therefore the treelike assumption does not

hold for this type of graphs.

The graph sparsity in the thermodynamic limit defines constant µ in the two cases as

µI =
〈k〉

Nf ′(0)κ2
0

(
γ − 2

γ − 1

)2

, µII =
〈k〉

2δIκ2
0

(
γ − 2

γ − 1

)2

, (5)

where I =
∫∞

0
h(x)dx. Since κ0 and δ are dumb parameters, we see that unless functions

f and h contain some additional parameters, the described two graph ensembles have only

two independent parameters: the power-law exponent γ and the average degree 〈k〉.

Consider now transformation rule T which simply removes all nodes with hidden variable

κ < κT from a given graph G in any of the two ensembles, where κT is some predefined

threshold. This transformation maps the original graph G to its subgraph GT of size NT =

N(κ0/κT )γ−1. The hidden variables κ of nodes remaining in GT are distributed according

to ρT (κ) = (γ − 1)κγ−1
T κ−γ with κ ≥ κT . That is, the power-law exponent in GT is the

same as in G, γT = γ. The transformation does not affect the hidden variables of the nodes

in subgraph GT . Therefore the connection probability in GT is exactly the same as in the

original graph G, which means that the ensemble of transformed graphs is identical to the

ensemble of original graphs, except that the average degree has changed. Specifically, the

transformation of parameters {α} → {αT} in the self-similarity definition in Eq. (1) is

γ → γT = γ, 〈k〉 → 〈k〉T = 〈k〉
(
N

NT

) 3−γ
γ−1

, (6)

which is the same for both type I and type II graphs [13]. Therefore, both ensembles belong

to the same self-similarity universality class.

Type III: As opposed to the first two equilibrium ensembles, the graphs of this type

are grown by adding nodes one by one. Each node i brings mi new links, where mi =
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FIG. 1: Ratio of the subgraph average degree 〈k〉T to the average degree 〈k〉 in the whole graph

as a function of the inverse relative subgraph size N/NT for few real networks. The subgraphs

are obtained by removing nodes with degrees below thresholds kT from the original network. To

insulate against finite-size effects, the data is shown only for subgraphs of size NT /N > 0.1. Actors,

actor collaborations from the Internet Movie Database; Airports, USA airport network; English,

web of semantic associations between words in English; Internet, topology of the Internet at the

Autonomous Systems level; Proteins, protein interaction network of Saccharomyces cerevisiae; and

Trust, mutual trust relationships among individuals extracted from the Pretty Good Privacy data.

m0(N/i)η and η ∈ [0, 1). Each link is then attached to a random existing node. A network

is initialized with 10m0N
η uncounted disconnected nodes. If η = 0, the generated graphs

have an exponential degree distribution. If η > 0, the degree distribution is P (k) = (1 +

m0/η)1/η/[η(k + m0/η)1+1/η], i.e., approximately a power law with exponent γ = 1 + 1/η.

The transformation rule T simply extracts from a grown graph its subgraph composed of the

first NT nodes. With this T , the graphs of this type are also self-similar, and the parameter

transformation in definition (1) is

γ → γT = γ, 〈k〉 → 〈k〉T = 〈k〉
(
N

NT

) 1
γ−1

. (7)

As we show next, self-similarity of the considered ensembles (types I, II, and III), and the

proportionality NT ∼ N are sufficient to prove the absence of a percolation threshold for

equilibrium scale-free graphs with exponent γ < 3 and for growing graphs with any γ. The

key property which we will use is that the average degree of these self-similar subgraphs is a

growing function of the subgraph depth in the nested subgraph hierarchy, meaning that 〈k〉T
grows as NT decreases in Eqs. (6,7). The same property characterizes many real networks

as shown in Fig. 1 and in [13, 14].

The proof is by contradiction. As usual [4], let the average degree be the order parameter
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for a percolation transition. Suppose that the considered self-similar ensembles do have a

non-zero percolation threshold at some critical value of the average degree 〈k〉c. Consider

a graph with the average degree below the threshold (〈k〉 < 〈k〉c) which has no giant com-

ponent. Since its subgraphs belong to the same ensemble, their percolation threshold is

also 〈k〉c. But since their average degree increases with their depth in the subgraph hi-

erarchy, there exist deep enough subgraphs whose average degree is above the threshold

(〈k〉T > 〈k〉c). We thus arrive at a contradiction since a graph which does not have a giant

component must contain subgraphs which do have giant components.

We next compute the size g(p) of the giant component in bond percolations with bond

occupation probability p, confirming the absence of the percolation threshold in the con-

sidered ensembles. We first focus on the equilibrium networks of types I and II, in which

case bond percolation is equivalent to replacing the connection probability rij with prij.

Given a node i and a set of other nodes Υ, the probability that i is connected to at least

one node in Υ is one minus the probability that i is not connected to any node in Υ, i.e.,

1 − exp
[∑

j∈Υ ln (1− prij)
]
. Node i belongs to the giant component if and only if it is

connected to the giant component of the graph without i. If g̃j(p) denotes the probability

that this i-deprived component contains some other node j, then

gi(p) = 1− exp

[∑
j 6=i

g̃j(p) ln (1− prij)

]
. (8)

Since in small-world networks a single node cannot significantly affect the percolation prop-

erties of the rest of the graph, we identify g̃j(p) = gj(p), transforming Eq. (8) into a self-

consistent equation for gi(p). We note that Eq. (8) does not use the treelike assumption.

This equation is thus valid for the type II graphs with strong clustering as well as for zero-

clustering type I graphs. It leads in the thermodynamic limit to the following expression for

the probability g(κ; p) that a node with expected degree κ belongs to the giant component:

g(κ; p) = 1− e−κψ(p), where ψ(p) satisfies (9)

[ψ(p)]3−γ

a(p)
=

[ψ(p)]2−γ

γ − 2
− Γ[2− γ, ψ(p)], with (10)

aI(p) =
(γ − 2)2

γ − 1
〈k〉p, (11)

aII(p) = −(γ − 2)2

γ − 1

〈k〉
I

∫ ∞
0

ln (1− ph(x))dx (12)
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FIG. 2: Relative size of the largest cluster 〈S1〉/N vs. the analytical solution in Eq. (13) for type

II networks with γ = 2.5, 〈k〉 = 3(γ − 1)/(γ − 2), h(x) = e−x, and average clustering coefficient

(measured over degrees larger than k = 1) c̄ = 0.5.

for types I and II, respectively. The size of the giant component is then

g(p) =

∫
ρ(κ)g(κ; p)dκ = 1− (γ − 1)Eγ[ψ(p)], (13)

where Eγ is the extended exponential integral. In diluted networks with p � 1, aI(p) ≈

aII(p), and the giant component size for both classes becomes

g(p) ∼
[
− (γ − 2)γ−1

(γ − 1)γ−2Γ(2− γ)
〈k〉p

] 1
3−γ

. (14)

The value of the critical exponent β in g(p) ∼ pβ is thus β = 1/(3 − γ), agreeing with

[15]. We emphasize that in our case, this result is obtained without using the treelike

assumption. Therefore, quite surprisingly, this exponent characterizes equilibrium scale-free

networks with arbitrary clustering and degree correlations.

In non-equilibrium networks of type III, we can compute an upper bound for β. Self-

similarity of these networks, coupled with the observation that any node belonging to the

giant component of a self-similar subgraph of a type III graph belongs also to the giant

component of the graph itself, leads to inequality

g(p) ≥ NT

N
g

([
N

NT

]η
p

)
. (15)

By choosing NT/N = p1/η, we obtain g(p) ≥ p1/ηg(1). Therefore the exponent β satisfies

β ≤ 1/η = γ − 1. We see that growth reduces significantly this exponent, compared to the

equilibrium case with the same γ.

We next check our analytic results against large-scale simulations. We generate type I

and II networks using the connection probabilities in Eq. (3) and h(x) = e−x, respectively.
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FIG. 3: Bond percolation simulations for equilibrium (types I and II) and growing (type III)

networks . a: susceptibility χ as a function of bond occupation probability p and graph size N

for the same network as in Fig. 2. b and c: position pmax and height χmax of the peak of χ

as functions of network size N . The straight lines are power law fits. d: exponents 1/ν∗ and

γ∗/ν∗ in pmax(N) ∼ N−1/ν∗ and χmax(N) ∼ Nγ∗/ν∗ for the type I and II graphs. e and f: Bond

percolation simulations for non-equilibrium networks (type III) with η = 1/4 (γ = 5) and m0 = 2.

The measured values of the scaling exponents are 1/ν∗ = 0.24(3) and γ∗/ν∗ = 0.3(8).

We do not allow κ’s above the natural cutoff κc = N1/(γ−1). For all the three graph types,

for each graph size N ranging from 103 to 105, and for each value of the bond occupation

probability p, we generate 103 graphs, and for each graph we perform bond percolation 104

times. For each percolation we measure the size S1 of the largest connected component in

the graph using the fast algorithm of Newman and Ziff [16], and calculate the average 〈S1〉

of the largest component size and its fluctuations, i.e., susceptibility χ =
√
〈(S1 − 〈S1〉)2〉,

for each combination of p, N , and graph type.

Since the convergence to the thermodynamic limit in scale-free networks is slow [17], it

is difficult to accurately measure exponent β in simulations. Nevertheless we observe an

agreement, albeit slowly converging, between the analytical solution for g(p) in Eq. (13)

and simulations in Fig. 2. In Fig. 3 we also show susceptibility χ(p,N) for equilibrium
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and growing networks. Susceptibility displays peaks whose positions pmax(N) and heights

χmax(N) depend as power laws on the system size, pmax(N) ∼ N−1/ν∗ and χmax(N) ∼

Nγ∗/ν∗ . Taken together, these two results confirm that the giant component emerges at

p = pmax, and that the percolation threshold vanishes in the thermodynamic limit N →∞

where pmax → 0 and χmax →∞.

In short, self-similar networks with subgraphs of growing average degree have no perco-

lation threshold. The proof is amazingly simple, and it can be generalized to any processes

with phase transitions whose critical points are monotonic functions of the average number

of neighbors. Such generalizations are straightforward, and boil down to substituting 〈k〉c
with an appropriate critical value for a particular process. Examples include the absence

of an epidemic threshold in epidemic spreading processes, or the absence of a paramagnetic

phase in the Ising model on scale-free networks [3]. In both cases, the critical value of the

corresponding parameter, the infection rate or temperature, are monotonous functions of

the average degree.

The identification of percolation universality classes for general random networks is a

notoriously difficult problem—details tend to prevail. Nevertheless, the results presented

here inevitably lead us to conjecture that self-similar networks can be split into three general

percolation universality classes, depending only on whether the average degree in the nested

subgraph hierarchy increases, remains constant, or decreases with the subgraph depth, and

independent of any other network properties, such as clustering, correlations, equilibrium

vs. non-equilibrium classification, etc.
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[17] M. Boguñá, C. Castellano, and R. Pastor-Satorras, Phys. Rev. E 79, 036110 (2009).

10


