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Mechanical dissipation poses an ubiquitous challenge to the performance of nanomechanical de-
vices. Here we analyze the support-induced dissipation of high-stress nanomechanical resonators.
We develop a model for this loss mechanism and test it on Si3N4 membranes with circular and square
geometries. The measured Q-values of different harmonics present a non-monotonic behavior which
is successfully explained. For azimuthal harmonics of the circular geometry we predict that destruc-
tive interference of the radiated waves leads to an exponential suppression of the clamping loss in
the harmonic index. Our model can also be applied to graphene drums under high tension.

PACS numbers: 85.85.+j, 42.50.Wk, 63.22.-m

Nanomechanical resonators offer great potential for
practical device applications that exploit their ultra-low
mass and high frequencies [1]. Examples range from scal-
ing scanning-probe force microscopy and mass-sensing
down to the molecular scale to providing alternatives
for radio frequency devices. In turn, measurements of
mechanical displacements with an imprecision below the
standard quantum limit and the preparation of ultracold
motional states have already been implemented with elec-
tromechanical [2–4] and optomechanical systems [5, 6].
These breakthroughs foreshadow the possibility of real-
izing a “quantum optics” analogue involving a macro-
scopic mechanical degree of freedom which would set a
new stage for fundamental tests and potential quantum
devices [4, 7, 8]. All of these endeavors share the desir-
ability of minimizing the mechanical dissipation which
can be quantified, for example, in terms of the damping
coefficient Γ = mRωR/Q — where mR is the resonator’s
effective mass, ωR its resonant angular frequency and
Q its quality-factor (Q-value). In fact, though the fig-
ures of merit for these various applications are quite di-
verse, in all instances performance is enhanced if Q is
increased while mR and ωR are kept approximately con-
stant [1, 8, 9]. Finally, with the advent of the use of
stressed silicon nitride membranes, nanomechanical de-
vices with remarkably low dissipation (Γ ∼ 10−14 Kg s−1

and Q ∼ 106) have already been demonstrated [9–15].
In this letter, we present and test a model that captures

the energy loss that occurs due to elastic wave radiation
[16–20] at the periphery of these high-stress resonators.
We show that this mechanism is significant in state of the
art structures and is strongly influenced by interference
effects. We compare the results of our model to mea-
surements of the resonant modes of two configurations, a
single “drum resonator” and a composite array of drum
resonators that effectively realizes a square membrane
[cf. Fig. 1 (a) and (b)]. We examine the harmonics of
these structures and accurately account for much of the
variation in the corresponding Q-values. Our analysis re-
veals that certain types of modes are inherently resilient
to clamping loss as a result of destructive interference of

the radiated waves. Thus, we provide insight into res-
onators that might be realized and yield better Q-values
in the future. On general grounds, the fact that the rel-
evant stress at the resonator-support contact scales at
least linearly with frequency combined with the 3D na-
ture of the support, lead to the naive expectation that
the dissipation (1/Q) due to elastic-wave radiation should
increase as one considers higher harmonics [cf. Eq. (1)].
In dramatic contrast, we find that for the harmonics of
a circular membrane the clamping loss is exponentially
suppressed as the number of radial nodal lines increases.

To derive an adequate model for the clamping losses,
we adopt the phonon tunneling approach introduced in
Ref. 17 and start from the general weak coupling expres-
sion for the dissipation 1/Q in terms of the “overlaps”
between the resonator mode and the free modes of the
substrate (“support”):

1
Q

=
π

2ρsρRω3
R

∫
q

∣∣∣∣∫
S

dS̄ ·
(
σ(0)
q · ū′R − σ′R · ū(0)

q

)∣∣∣∣2
× δ[ωR − ω(q)] . (1)

Here σ′R and ū′R are the stress and displacement fields
associated with the normalized resonator mode, σ

(0)
q and

ū
(0)
q are the analogous fields for the continuum of support

free modes labeled by q [eigenfrequencies ω(q)], and ρs
and ρR are, respectively, the densities of the substrate
and resonator materials. In our setting the resonator
mode should satisfy clamped boundary conditions at the
resonator-support contact area S while the unperturbed
support modes should satisfy free boundary conditions
implying that only the second term in Eq. (1) contributes.
The substrate is modelled as a half-space that contacts
the membrane resonator at its rim S — i.e. the under-
etched gap between the suspended structure and the sub-
strate is neglected when determining the support free
modes (for our structures this gap was . 200nm� D).
We assume the “high stress” regime t2/D2 � σ/ER � 1,
where σ is the tensile stress in the membrane, t its thick-
ness, D its large dimension (diameter or side) and ER the
Young modulus of the resonator material. This implies
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FIG. 1. (a) Micrograph of a single drum resonator (similar to the one used in our analysis) superposed with schematic diagrams
of the different harmonics (n,m) depicting their nodal lines (the origin is set at the center of the membrane). (b) Idem for a
square membrane resonator. (c) Dissipation 1/Q as a function of frequency for the different harmonics of a Si3N4 drum resonator
(D = 14.5µm, t = 110nm, and σ = 0.90 GPa). (d) Idem for a square membrane resonator (253.2µm×253.2µm×0.0125µm
with σ = 0.87 GPa). Red plot: Measured values with an error of 10% for 1/Q — we ascribe the splitting of degeneracies
observed for the square membrane [cf. (d)] to disorder. Blue plot: Least squares fit of our model to the measured 1/Q using as
fit parameters an internal dissipation offset (1/Qint) and material properties of the substrate (Es = 148 GPa, ρs = 3.75gcm−3,
and 1/Qint = 8.5 × 10−7 for the square membrane, and Es = 323 GPa, 1/Qint = 4.6 × 10−5 for the drum). Green plot: 1/Q
without the offset corresponding to the predicted clamping loss — the resulting limits for the Q-values of the drum and square
membrane are shown, respectively, in (e) and (f). High-Q harmonics (n, 1)|n>0 [(n, n)|n>1] of the drum [square] are marked
by circles; low-Q harmonics (n, 1)|n>0 of the square, by triangles. For the drum [square] all harmonics with frequencies below
130 MHz [9 MHz] are included except (0, 3), (3, 2) [(7, 1)].

that bending effects are negligible and one can use the
classical wave equation adequate for a taut membrane
[21]. Thus for the drum’s eigenfrequencies we obtain
[cf. Fig. 1 (a), (b)]: ωnm = 2ζnmcR/D with n = 0, 1, . . .
and m = 1, 2, . . .; while the square’s eigenfrequencies are
given by: ωnm = π

√
n2 +m2cR/D with n,m > 0 Here

cR =
√
σ/ρR is the phase velocity in the membrane,

and ζnm is the mth zero of the Bessel function Jn(x).
In this context, the weak coupling approximation under-
pinning Eq. (1) reads ωnmt/cR � 1 and the stress σ′R
corresponds to the variation with respect to equilibrium.

For the single drum we adopt support eigenmodes
ū

(0)
q,θ,l,γ(r̄) (with l = 0,±1, . . .) that have axial symme-

try with respect to z [cf. Fig. 1 (a)]. These are related
to the plane wave eigenmodes ū(0)

q̄,γ(r̄) by: ū
(0)
q,θ,l,γ(r̄) =

[(−i)n/
√

2π]
∫ π
−π dϕeinϕū(0)

q̄,γ(r̄); where γ = l, t, s labels
the different types of relevant modes [i.e. longitudinal
(l), transverse SV (t), and SAW (s) given that SH waves
do not contribute] with velocities of propagation cγ , and
we use spherical coordinates for the incident wavevec-
tor q̄(q, θ, ϕ) = q(sin θ cosϕ, sin θ sinϕ, cos θ) [θ= π/2 for
γ= s and θ ≤ π/2 otherwise]. Thus, substitution of the

support and resonator modes (ωR → ωnm) into Eq. (1)
(cf. [22]) leads to

1
Qnm

=
4π2ζnmρRt

ρsD

∑
γ

η3
γ ũn,γ(ηγζnm, νs) . (2)

Here we introduce the dimensionless functions
ũl,γ 6=s(q̃, νs) = 2π

∫ π/2
0

dθ sin θ|u(0)
q̄,γ;z(0, νs)|2J2

l (q̃ sin θ),
ũl,s(q̃, νs) = 2π|u(0)

q̄,s;z(0, νs)|2J2
l (q̃) and define

ηγ ≡ cR/cγ ∼
√
σρs/EsρR — where the prefactors

of order unity, which depend on γ, are functions of
the Poisson ratio for the substrate νs. We note that
|u(0)
q̄,γ;z(0, νs)|2 solely depends on γ, cos θ and νs (cf. [22]).
In turn, for the square membrane an analogous proce-

dure detailed in the [22], leads to:

1
Qnm

=
16πn2m2ρRt√
n2 +m2ρsD

∑
l,γ

η3
γw̃

n,m
l,γ (

√
n2 +m2 ηγ , νs)

(3)
with w̃n,ml,s (q̃, νs) = |u(0)

q̄,s;z(0, νs)|2f̃nml(q̃), w̃
n,m
l,γ 6=s(q̃, νs) =∫ π/2

0
dθ sin θ|u(0)

q̄,γ;z(0, νs)|2f̃nml(q̃ sin θ), where l ≥ 0 and
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we introduce f̃nml(x) = fl(πx)[Znml(x) + Zmnl(x)] with

Znml(x)≡
zln<(x)

n3 (n2 − x2)3/2

{
2n(l + 1)

√
n2 − x2 + zn<(x)

+
16n2

(
n2 − x2

)
zn<(x)

[zn<(x) + zm>(x)] [zn<(x) + zm<(x)]

}
.

Here zn≶(x) ≡ 2n2 − x2 ∓ 2n
√
n2 − x2 and the func-

tions fl(x) are given by: fl(x) ≡ [δ0l − 2(−1)nJ4l(x) +
(−1)lJ4l(

√
2x)]/(2δ0lx4l) for n + m even, and fl(x) =

[δ0l−2 sin2(lπ/2)J2l(x)−cos(lπ/2)J2l(
√

2x)]/(2δ0lx2l) for
n + m odd. Equation (3) is only valid for the case
min{n,m} > ηs

√
n2 +m2 which is satisfied for the res-

onances studied here — note that material properties
always imply ηl < ηt < ηs, and σ � Es implies ηs � 1.

We proceed to compare the predictions of our model
[Eqs. (2)-(3)] with the dissipation measured in nanome-
chanical membrane resonators (cf. Fig. 1). These res-
onators are made of “stoichiometric” Si3N4 deposited by
low pressure chemical vapor deposition on SiO2 [14]. The
nitride has an inherent stress of 1.2 GPa, as measured by
a wafer bow technique [10], and a density ρR = 2.7gcm−3.
After lithographic patterning to define access holes, the
resonators are suspended by etching the underlying oxide
through these holes, using buffered oxide etch (BOE) for
the single drum and HF for the square membrane, and
critical point dried. Thus a single access hole results in a
circular drum geometry, while a square geometry is de-
fined by a periodic square lattice of such holes (50 × 50
separated by 5µm). Given the small size of the holes
(. 1µm) compared with the typical mode wavelength,
we neglect them in our model. For the square array, the
same consideration applies to the hole separation so that
we use a square membrane model with uniform thickness
t = 12.5 nm given by the average over the array [23] and
side D =

√
A = 253.2µm, where A is the suspended

area. For the single drum (diameter D = 14.5µm) the
use of a BOE etch implies that the thickness is uniform
and equal to the nitride thickness (110nm).

The mechanical resonances of the structures are char-
acterized under vacuum and room temperature condi-
tions, using a technique described in Ref. 14. The res-
onators are actuated using a piezo disc that vibrates the
chip in the out-of-plane direction and the motion is de-
tected via a 633nm CW laser. Figure 1 (c)-(f) compares
the measured frequencies and Q-values of different har-
monics for the two configurations, single drum and square
array, with the predictions of our model. This compar-
ison takes into account three issues: (i) the release of
the resonator leads to a local deformation of the wafer
that lowers the membrane’s tensile stress with respect to
the one in the nitride layer, (ii) in addition to clamp-
ing losses the resonator will be affected by internal dis-
sipation [11, 14, 15, 24, 25], and (iii) the parameters for
the half-space model of the substrate must be judiciously
chosen.

To deal with (i) we determine the membrane phase
velocity cR from a suitable linear regression that uses
as input the resonator size D, the measured frequencies,
and their mode indices which can be identified from the
frequency ratios between the harmonics and the funda-
mental mode. We find an excellent correlation that yields
cR = 576.8 ms−1 (566.8 ms−1) for the drum (square).

Our model is in excellent agreement with the observed
trends providing internal dissipation (ii) is incorporated
by adding to the calculated clamping loss an overall offset
1/Qint which is left as a fit parameter. One should note
that: (a) internal dissipation has been identified as a rel-
evant mechanism in previous experiments on high-stress
Si3N4 resonators, with indications of surface effects play-
ing a substantial role [11, 15], and (b) our analysis does
not necessarily rule out a minor frequency variation for
this additional mechanism which would be masked by the
non-monotonic behavior of the clamping loss (see below).
To elucidate (iii) one needs to compare the wavelengths
of the resonant “support” modes with the thickness of
the Si wafer (0.5mm). For the square the resonant fre-
quencies are in the MHz range resulting in wavelengths
in Si (4-8mm) much larger than the wafer’s thickness so
that these modes are dominated by the properties of the
underlying piezo and positioning system. Thus, we adopt
νs = 1/3 and leave the density ρs and Young modulus
Es as fit parameters. On the other hand for the drum
the resonances studied lie in the 100 MHz range so that
the elastic wave radiation is determined mostly by the
anisotropic properties of crystalline Si. For this case we
adopt ρs = 2.33 gcm−3 and νs = 0.28, but leave Es as a
fit parameter given the isotropic nature of our model.

In both cases, drum and square geometry, we find a
class of modes that consistently exhibit lower dissipation
1/Q when compared to nearby modes [cf. Fig. 1 (c) and
(d)]. Their measured Q remains approximately constant
as the harmonic index is increased, leading to a growth in
their fQ product that for the square reaches a maximum
of 1.0 × 1013Hz for the (6, 6) harmonic. These “special”
classes of harmonics for the drum and square are, re-
spectively, (n, 1)|n>0 and (n, n)|n>1 and correspond to
the presence of nodal lines that intersect the periphery
at evenly spaced points [cf. Fig. 1 (a) and (b)]. In con-
trast, for the square geometry the modes (n, 1), (1, n),
where two of the sides do not intersect any nodal lines,
tend to exhibit smaller Q for comparable frequencies with
fQ ∼ 1012Hz. An intuitive heuristic understanding of
these trends emerges from realizing that for low harmon-
ics, with membrane wavevectors ∼ π/D, the typical res-
onant wavelengths in the substrate are much larger than
D. Thus, for the special modes the clamping loss is sup-
pressed [cf. Fig. 1 (e) and (f)] due to destructive interfer-
ence between the waves radiated by the different equiva-
lent segments of the periphery, defined by the nodal lines,
which have alternating π-phases. Concomitantly, unlike
the fundamental mode, these special modes are associ-
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ated to stress sources with vanishing total force.
A quantitative grasp of these striking features can be

gained by exploiting the smallness of the ηγ underpin-
ning the aforementioned wavelength separation. For the
drum, relevant harmonics satisfy the condition ηγζnm �√
n+ 1 which allows us to Taylor expand the Bessel func-

tions in the ũl,γ yielding an approximation for Eq. (2)
that implies the following [26]:

Q01 ≈
ρsc

3
t

2π2σRc2Rω01ũ0(νs)

∣∣∣∣
νs=1/3

= 0.029

√
ρR
ρs

(
Es
σ

)3
D

t

Qn1

Q01
∼ n

2n+1
16

(
0.517

cs
cR

)2n

,
Qnm
Qn1

≈
(
ζn1

ζnm

)2n+1

(4)

where σR = ρRt is the surface mass density of the mem-
brane and ũ0(νs) ≡

∑
γ(ct/cγ)3ũ0,γ(0, νs). Thus, the

clamping-loss limited Q-values of modes (n, 1) effectively
grow exponentially — as the super-exponential factor
plays a negligible role for relevant n, in sharp contrast
to series of modes for which m is increased while n
is kept constant. These exhibit a decrease of Qclamp

for increasing frequency [27]. On the other hand, for
the square geometry analogous considerations imply for
m ∼ n� ζ01/2πηγ a rise in Qclamp that is merely linear,
with the damping rate tending to a constant value, as the
harmonic indices are increased with their ratiom/n fixed.
In turn, for our setting given the magnitude of 1/Qint all
the high-Q modes present roughly constant Q-values.

A comparison between the predictions [cf. Eqs. (2)
and (3)] for the two geometries (with appropriate dimen-
sions) also reveals that for “special” harmonics [(n, 1)|n>0

and (n, n)|n>1] with the same frequency and number of
nodal lines the circular geometry always yields a higher
Q. In turn, one should note that the scalings, embod-
ied in Eq. (4), for the Q-values in terms of ρR/ρs, Es/σ,
and D/t are completely general and independent of the
shape of the boundary. These, directly imply that the
fQclamp product of a given harmonic is independent of
D. Furthermore, typical parameters yield for the funda-
mental mode fQclamp ∼ 1012Hz, which is comparable to
experimental values (cf. Fig. 1 (c) and (d), and Refs. 13,
9). Finally, we have performed similar calculations for
doubly-clamped beams under high-stress (nanostrings)
which will be presented elsewhere. We find that though
destructive interference leads to an enhancement of the
Q for antisymmetric modes with low n as compared to
symmetric modes, within each parity Q decreases with
harmonic index so that there are no modes resilient to
elastic-wave radiation as for the 2D geometries.

In conclusion, we find that the dissipation of different
harmonics of a given membrane resonator exhibit a strik-
ing non-monotonic behavior which can be understood in
terms of how the mode-shapes of different harmonics in-
fluence the clamping loss. We find classes of modes for
which the measured Q remains approximately constant

and substantially larger than for other modes with com-
parable frequency, and explain this phenomenon in terms
of destructive interference between the radiated waves
leading to a strong suppression of the clamping loss. No-
tably, our analysis implies that for modes (n, 1) of a cir-
cular geometry, the damping rate due to elastic-wave
radiation vanishes exponentially in n rendering them
“asymptotically mute”. Thus, for typical parameters,
these azimuthal harmonics can be regarded as effectively
clamping-loss free for moderate n (e.g. fQclamp & 1017Hz
for n ≥ 5 and thickness t < 100 nm). Our results are rele-
vant to state-of-the-art dispersive optomechanical setups
[9, 13] and the model is also applicable to graphene nan-
odrums under tension [28]. Finally, we highlight that the
interference effects we have unveiled will also be opera-
tional for the flexural modes of rigid plates.
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