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In a linear magnetoelectric the lattice is coupled to electric and magnetic fields: both affect the
longitudinal-transverse splitting of zone-center optical phonons on equal footing. A response matrix
relates the macroscopic fields (D, B) to (E, H) at infrared frequencies. It is shown that the response
matrices at frequencies 0 and ∞ fulfill a generalized Lyddane-Sachs-Teller relationship. The rhs
member of such relationship is expressed in terms of weighted averages over the longitudinal and
transverse excitations of the medium, and assumes a simple form for an harmonic crystal.

PACS numbers: 75.85.+t, 77.22.-d

The original Lyddane-Sachs-Teller (LST) relation-
ship [1] applies to the simple case of a cubic binary crystal
in the harmonic regime. It relates four macroscopically
measurable constants as

ε(0)

ε(∞)
=

ω2

L

ω2

T

. (1)

Here ε(0) is the static dielectric constant, which includes
the lattice contribution, ε(∞) is the so called “static high
frequency” (a.k.a “clamped-ion”) dielectric constant,
which accounts for the electronic response only, and ωL

(ωT) is the zone-center longitudinal (transverse) optical
frequency [2]. It is remarkable that all microscopic

parameters (force constants, masses, Born effective
charges, cell volume) disappear from Eq. (1).

Magnetoelectrics (MEs) are insulators where electric
fields control magnetization, and conversely magnetic
fields control polarization; they attracted considerable
theoretical and technological interest in recent times [3–
11]. The simplest and most studied single-crystal linear
ME is antiferromagnetic Cr2O3 [3, 5–7]. In any linear
ME the role of the dielectric function ε(ω) is played
by the 2 × 2 response matrix—called R(ω) here—which
yields the macroscopic fields (D, B) in terms of (E, H)
at frequency ω:

(

D
B

)

= R(ω)

(

E
H

)

≡

(

ε(ω) α(ω)
α(ω) µ(ω)

) (

E
H

)

, (2)

where ε, µ, and α are permittivity, magnetic permeabil-
ity, and ME coupling, respectively. In this Letter we are
going to show that a generalized LST relationship holds
in the form

tr {R−1(∞)R(0)} − 2

2 − tr {R−1(0)R(∞)}
=

ω2

L

ω2

T

. (3)

In the simple case of a magnetically inert material (i.e.
µ ≡ constant, α ≡ 0) the lhs of Eq. (3) equals indeed
ε(0)/ε(∞). While in ordinary dielectrics the LO-TO
splitting is due to the coupling of the ionic displacements
to macroscopic electric fields, in linear MEs it is due to

the coupling of both (electric and magnetic) fields on the
same footing: this is perspicuous in the lhs of Eq. (3).

The simple form of Eqs. (1) and (3) requires a
crystalline system with only a single IR-active mode at
the zone center. The additional requirement of cubic
symmetry can be relaxed; it is nonetheless convenient to
consider only crystals whose symmetry is orthorombic or
higher; then all crystalline tensors can be simultaneously
diagonalized (as e.g. in Cr2O3). This allows us to adopt
simple scalar-like notations, as in Eqs. (1) and (3) with
the proviso that we deal separately with each principal
direction.

Over the years the LST relationship has been extended
in several ways, to cover cases where more than one IR-
active mode per direction exists [12, 13], the crystal is
in a low-symmetry class [14, 15], or even the material is
noncrystalline and/or anharmonic [16–19]. The general
case can be written as

ε(0)

ε(∞)
=

〈ω2〉L
〈ω2〉T

. (4)

The quantities in the rhs are weighted averages, obtained
from moments of the appropriate spectral functions. The
derivation is based on general principles of statistical
mechanics and does not require an Hamiltonian, even
less an harmonic one [16, 18]; in the special case of a
single IR-active harmonic mode per direction Eq. (4) is
equivalent to Eq. (1). In this Letter we generalize the
viewpoint of Ref. [18] to the ME case, showing that

tr {R−1(∞)R(0)} − 2

2 − tr {R−1(0)R(∞)}
=

〈ω2〉L
〈ω2〉T

, (5)

where the rhs is defined below, Eqs. (10) and (11).
The presentation proceeds as follows. We start at a

very general level without any microscopic assumption
about the ME medium, and using only very general
principles in order to arrive at Eq. (5). We will then
apply the general results to a crystalline system in the
harmonic regime, and finally we will show that Eq. (5)
reduces to Eq. (3) in the single-mode case.
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We write explicitly the linear response matrix of the
ME medium as the sum of its real and imaginary
part: R(ω) = R′(ω) + iR′′(ω), and analogously for
its inverse; both R(ω) and R−1(ω) obey the Kramers-
Kronig relationships in the form

R′(ω) −R(∞) =
2

π

∫ ∞

0

dω′ ω′R′′(ω′)

ω′2 − ω2
, (6)

R−1′(ω) −R−1(∞) =
2

π

∫ ∞

0

dω′ ω′R−1′′(ω′)

ω′2 − ω2
. (7)

From these, it follows immediately that the numerator
and denominator in the lhs of Eqs. (3) and (5) are

tr{R−1(∞)R(0)} − 2 =
2

π

∫ ∞

0

dω

ω
tr{R−1(∞)R′′(ω)},

(8)

2 − tr{R−1(0)R(∞)} = −
2

π

∫ ∞

0

dω

ω
tr{R−1′′(ω)R(∞)}.

(9)
The integrands in the rhs of Eqs. (8) and (9) are
interpreted here as the transverse and longitudinal
spectral weights, respectively, by means of which we
define the second moments

〈ω2〉T =

∫ ∞

0

dω
ω ω2tr {R−1(∞)R′′(ω)}

∫ ∞

0

dω
ω tr {R−1(∞)R′′(ω)}

(10)

〈ω2〉L =

∫ ∞

0

dω
ω ω2tr {R−1′′(ω)R(∞)}

∫ ∞

0

dω
ω tr {R−1′′(ω)R(∞)}

. (11)

The reason for the semantics (transverse and longitudi-

nal) may appear obscure at this point; it will become
clear when specializing Eqs. (10) and (11) to an harmonic
crystal—see also Eq. (26) below.

In order to arrive at our main result, Eq. (5), we exploit
the “superconvergence” theorem [20]. For large ω (i.e.
for ω much larger than all the resonances of the medium)
R′′(ω) vanishes; Eqs. (6) and (7) yield, to leading order
in 1/ω2,

R(∞)−1R(ω) ≃ I −
2

πω2

∫ ∞

0

dω′ ω′R(∞)−1R′′(ω′),

(12)

R(ω)−1R(∞) ≃ I −
2

πω2

∫ ∞

0

dω′ ω′R−1′′(ω′)R(∞),

(13)
where I is the 2× 2 identity. Inversion of Eq. (12) to the
same order gives the alternative expression

R(ω)−1R(∞) ≃ I +
2

πω2

∫ ∞

0

dω′ ω′R(∞)−1R′′(ω′).

(14)
Next we take the trace of Eqs. (13) and (14); permuting

the matrices in the product we get the identity

∫ ∞

0

dω ω tr {R(∞)−1R′′(ω)}

= −

∫ ∞

0

dω ω tr {R(ω)−1′′R(∞)}. (15)

In order to arrive at Eq. (5) it is enough to put together
Eqs. (8), (9), (10), (11), and (15).

We stress that at the root of the superconvergence
identity, Eq. (15), is the assumption that ω = ∞ actually
means ω much higher than all the frequencies of ionic
motions, yet lower than the frequencies of electronic
excitations [2]. Therefore the clamped-ion response
R(∞) is a real matrix.

Next we address an harmonic crystal. A zone-center
optical mode is lattice-periodical; it is then expedient
to consider the energy per cell of a (macroscopically
homogeneous) solid with a frozen-in phonon distortion.
This energy is well defined only when a prescription for
taking the thermodynamic limit is given. We cut a
sample in the shape of a slab parallel to the principal
axes; we remind our assumption that all crystal tensors
are diagonal on them. If the slab is free-standing in
vacuo, all fields vanish outside (E=D=H=B=0), while
the value of the fields inside depend on the polarization
of the mode. Simple electrostatics and magnetostatics
imply that if the phonon polarization is parallel to the
slab (“transverse”), both E and H vanish, while if it
is perpendicular (“longitudinal”) D and B vanish [22].
The order of the limits (first a slab, then its thickness
going to infinity) is essential, and the two energies
(longitudinal and transverse) are indeed different in the
thermodynamic limit. Similar reasonings apply if the
lattice-periodical mode is regarded as the k → 0 limit of
a finite-k optical phonon [2].

If the crystal has N IR-active modes in each principal
direction, we denote with ωn the zone-center TO
frequencies (i.e those with E=0 and H=0); equivalently,
ω2

n are the eigenvalues of the analytical part of the
dynamical matrix at k = 0. The free energy per cell in
function of the normal coordinates un, E, and H (taken
as independent variables) is expanded to second order
as [3, 5]

F (E, H, {un}) = F0 +
1

2

∑

n

ω2

nu2

n

−
Ω

8π
[ ε(∞)E2 + 2α(∞)EH + µ(∞)H2 ]

−
∑

n

(unZ∗
nE + unζ∗nH), (16)

where we adopt atomic Gaussian units [21], and Ω is the
cell volume. Z∗

n are the mode-effective charges and ζ∗n
their magnetic analogues; notice that in ordinary units
the normal-mode coordinates would include a factor with
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the dimensions of (mass)1/2, while Z∗
n and ζ∗n would

include a factor with the dimensions of (mass)−1/2.
The derivatives of F provide the equations of motion

in the form

D = −
4π

Ω

∂F

∂E
= ε(∞)E + α(∞)H +

4π

Ω

∑

n

Z∗
nun

B = −
4π

Ω

∂F

∂H
= α(∞)E + µ(∞)H +

4π

Ω

∑

n

ζ∗nun

fn = −
∂F

∂un
= −ω2

nun + Z∗
nE + ζ∗nH. (17)

We then consider forced oscillations at frequency ω, i.e.
fn = −ω2un. Elimination of the un’s from Eq. (17)
provides the linear ME response, including the lattice
contribution; we cast it in compact form as

R′(ω) = R(∞) +
4π

Ω

∑

n

ZnZ
†
n

ω2
n − ω2

(18)

R′′(ω) =
4π2

Ω

∑

n

ZnZ
†
n δ(ω2

n − ω2), (19)

where the ME lattice coupling vectors are

Zn =

(

Z∗
n

ζ∗n

)

, Z†
n =

(

Z∗
n ζ∗n

)

. (20)

Eq. (18) is the elegant result obtained in 2008 by J.
Ìñiguez [5]; the TO frequencies ωn are clearly the N poles
of R(ω).

Actual computations performed for the paradigmatic
material Cr2O3 and based on Eq. (18) show that the
magnetoelectric coupling α(0) is significantly enhanced
by the lattice contribution [5]. Clearly, a large coupling
is the key property to be exploited in device applications
[3].

It is now expedient to express Eq. (17) in terms of D
and B.

(

E
H

)

= R−1(∞)

[

(

D
B

)

−
4π

Ω

∑

n

Znun

]

(21)

−ω2un = −ω2

nun −
4π

Ω
Z†

nR
−1(∞)

∑

n′

Zn′un′

+ Z†
nR

−1(∞)

(

D
B

)

. (22)

As explained above, in the LO modes D=0 and B=0 by
definition [22]. The first line of Eq. (22) clearly shows
that the LO eigenmodes are in general different from the
TO ones; an explicit N × N diagonalization is needed
in order to find the LO frequencies. We indicate with
ω̃n these frequencies, and we also transform the lattice
coupling vectors to the LO eigenmodes as R−1(∞)Zn →
Z̃n, in order to write Eq. (22) as

−ω2un = −ω̃2

nun + Z̃†
n

(

D
B

)

. (23)

Elimination of the un’s from Eqs. (21) and (23) provides
R−1(ω) in the form

R′−1(ω) = R−1(∞) −
4π

Ω

∑

n

Z̃nZ̃
†
n

ω̃2
n − ω2

(24)

R′′−1(ω) = −
4π2

Ω

∑

n

Z̃nZ̃
†
n δ(ω̃2

n − ω2). (25)

Using the above results, we arrive at a very transparent
expression for the rhs member of Eq. (5):

〈ω2〉L
〈ω2〉T

=

∑

n
1

ω2
n

Z†
nR

−1(∞)Zn

∑

n
1

ω̃2
n

Z̃†
nR(∞)Z̃n

, (26)

i.e. 〈ω2〉T is the weighted harmonic mean of the ω2
n’s,

with weights Z†
nR

−1(∞)Zn, and 〈ω2〉L is the weighted
harmonic mean of the ω̃2

n’s, with weights Z̃†
nR(∞)Z̃n.

The two sets of weights are in general different, except
when the transverse and longitudinal eigenmodes happen
to be the same. However, “superconvergence”, Eq. (15),
implies the same normalization in any case:

∑

n

Z†
nR

−1(∞)Zn =
∑

n

Z̃†
nR(∞)Z̃n. (27)

In the special case where a single IR-active mode exists
〈ω2〉T = ω2

T
and 〈ω2〉L = ω2

L
: this concludes the proof of

Eq. (3).
A well known bound requires the matrix R to be

positive definite [3]. Since this is based on stability
arguments, it only concerns R(0) and R(∞): the former
is a genuine static property of the real system, while the
latter can be regarded as a static property in the infinite
nuclear mass limit. At any other frequency the matrix
R(ω) accounts for the forced oscillations of the system,
which is clearly out of equilbrium. Therefore R(ω) is not
required, in general, to be positive definite; because of
the same reason, ε(ω) is not a positive real function in
ordinary dielectrics [2].

All of the above results reduce to previously known
ones for a magnetically inert material, where the 2 × 2
matrix R(ω) has the unique nontrivial entry ε(ω). It is
worth examining Eq. (26) for ζ∗n = 0:

〈ω2〉L
〈ω2〉T

=
1

ε2(∞)

∑

n
1

ω2
n

(Z∗
n)2

∑

n
1

ω̃2
n

(Z̃∗
n)2

. (28)

The weights in the harmonic means (Z∗
n)2 and (Z̃∗

n)2

are the (squared) transverse and longitudinal effective
charges, respectively. If (and only if) the transverse
and longitudinal eigenmodes are the same, then Z̃∗

n =
Z∗

n/ε(∞). Actually, this is the well known relationship
between the transverse (a.k.a. Born) end longitudinal
(a.k.a. Callen) effective charges.

For an ordinary dielectric the N poles of ε(ω) are the
TO frequencies ωn, while the N poles of 1/ε(ω) are the
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LO ones ω̃n: see Eqs. (18) and (24). Since the response is
a single-component function, the poles of 1/ε(ω) coincide
with the zeros of ε(ω). Simple considerations about zeros
and poles of ε(ω) eventually lead to the simple expression

〈ω2〉L
〈ω2〉T

=

N
∏

n=1

ω̃n

ωn
, (29)

first found in 1961 by Kurosawa [12, 19]. This result does

not generalize to the ME case, for the good reason that
the response is a 2×2 matrix: the present formulation is
based on traces throughout, and the inverse of the trace
bears no simple relationship to the trace of the inverse,
at variance with the purely electrical case.

This Letter addresses the linear relationship between
the pairs (E, H) and (D, B) throughout, starting with
Eq. (2) onwards. Other pairings are possible. In
particular the choice (E, B) and (D, H) looks like a more
natural one for at least two reasons: (i) the microscopic
forces are determined by the (E, B) pair [22], and (ii)
a relativistic formulation can be elegantly cast in terms
of two four-dimensional field tensors whose entries are
(E, B) and (D, H), respectively [6, 7]. Nonetheless,
the same choice in the present context would not be a
convenient one. In fact, as explained above (see also Ref.
[22]), in a transverse mode E = 0 and B 6= 0, and in a
longitudinal one D = 0 and H 6= 0.

Throughout this Letter we have stressed the formal
equivalence of electric and magnetic fields in their
coupling to the lattice in MEs. However, the orders
of magnitude of electric and magnetic phenomena in
condensed matter are not the same. ME effects are
notoriously small [3], and the corrections to the LST
relationship in most cases are expected to be small as
well. In oxides the dielectric constants—either ε(∞) or
ε(0)—are typically in the range 2 to 10, while |µ − 1| is
of the order 10−4 [23]; in the most studied linear ME, i.e.
Cr2O3, even α is of the order 10−4 [5, 6]. An accurate
evaluation of the lhs of Eqs. (3) and (5) in “conventional”
ME materials would require a measurement of all the
entries of the response matrices R to the same absolute
error, which could be problematic. More perspicuous
effects are expected in nonconventional materials [3],
such as those where the ME effect can be tuned [24].

In conclusion, this Letter shows that the ratio
ε(0)/ε(∞) entering the LST relationship must be
replaced, for a linear ME, by the lhs of Eqs. (3) and (5),
whose ingredients are the full ME responses at frequency
0 and ∞, i.e. static and clamped-ion. In the most general
case the rhs member of our generalized LST relationship
is the ratio between spectral moments of the longitudinal
and transverse excitations of the medium. It assumes
a simple form for a crystalline ME in the harmonic

approximation, and finally is identical to the original LST
one when only one mode is IR active. The relationship
shows that the LO-TO splitting in a ME originates from
the coupling of ionic displacements to both electric and
magnetic macroscopic fields.
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