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We develop a simple Landau-Ginzburg-type continuum theory of solvent-free ionic liquids and
use it to predict the structure of the electrical double layer. The model captures overscreening from
short-range correlations, dominant at small voltages, and steric constraints of finite ion sizes, which
prevail at large voltages. Increasing the voltage gradually suppresses overscreening in favor of the
crowding of counterions in a condensed inner layer near the electrode. The predicted ion profiles
and capacitance-voltage relations are consistent with recent computer simulations and experiments
on room-temperature ionic liquids, using a correlation length of order the ion size.

PACS numbers:

Introduction. — The rediscovery of room tempera-
ture ionic liquids (RTILs) as designer solvents promised
a revolution in synthetic chemistry [1]. Thousands of
RTILs have been synthesized with large organic cations
and similar organic or smaller inorganic anions. Non-
volatile and capable of withstanding up to ±4-6 V with-
out decomposition, RTILs also hold promise as solvent-
free electrolytes for super-capacitors, solar cells, batteries
and electroactuators [2–10].

For such applications, it is crucial to understand the
structure of the RTIL/electrode double layer. The clas-
sical Gouy-Chapman-Stern (GCS) model for dilute elec-
trolytes was used to interpret RTIL capacitance data un-
til recently, when a mean-field theory for the crowding

of finite-sized ions [11] suggested bell or camel shapes
of the differential capacitance versus voltage, decaying
as C ∼ V −1/2. These were basically confirmed in sub-
sequent experimental [12–16], theoretical [17–19] and
computational[20–24] studies. Similar theories have also
been developed for highly concentrated electrolytic so-
lutions [25–27], but none of these models accounts for
short-range Coulomb correlations [28], which could be
very strong in RTIL [29]. As first revealed by linear re-
sponse theories of molten salts [30], correlations gener-
ally lead to over-screening [28], where the first layer at
the electrode delivers more counter-charge than is on the
surface; the next layer then sees a smaller net charge of
the opposite sign, which it again overscreens; and so-on,
until neutrality is reached. Recent computer simulations
of a model RTIL/electrode interface have demonstrated
overscreening structures at low voltage, similar to exper-
iments [29], which are gradually overcome by the forma-
tion of a condensed layer of counter-ions at high voltage
[20], as shown in Fig. 1.

In this Letter, we suggest a phenomenological theory to
describe the interplay between over-screening and crowd-
ing. Compared to more involved models of statistical me-
chanics, the theory only crudely approximates discrete
interactions near a surface, but it is simple enough to
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FIG. 1: Structure of the ionic-liquid double layer (in color)
predicted by our theory and molecular dynamics simula-
tions [20] (Figs. 2-3 below). (a) At a moderate voltage,
V = 10kBT/e (0.26 V), the surface charge is overscreened
by a monolayer of counterions, which is corrected by an ex-
cess of co-ions in the second monolayer. (b) At a high voltage,
V = 100kBT/e (2.6 V), the crowding of counter-ions extends
across two monolayers and dominates overscreening, which
now leads to a co-ion excess in the third monolayer. Due to
electrostriction, the diffuse double layer (colored ions) is more
dense than the quasi-neutral bulk liquid (white ions).

be applied to dynamical problems in nanotribology, elec-
troactuation, and porous super-capacitors.

Theory. — We propose a Landau-Ginzburg-like func-
tional for the total free energy [31]:

G =

∫

V

dr
{

g + ρφ − ε

2

[

|∇φ|2 + ℓ2
c(∇2φ)2

]

}

+

∮

S

dr qsφ

(1)
where g(c+, c−) is the enthalpy density, depending on the
ionic concentations c±, as described below; ρ = e(z+c+−
z−c−) is the mean charge density in the liquid volume V ;
qs is the surface charge density on a bounding metal sur-
face S; φ is the mean electrostatic potential, and we sub-
tract the self energy of the electric field − ε

2
|∇φ|2, assum-

ing a constant permittivity ε to describe the polarizabil-
ity of the ions. The first three terms in brackets are those
used in mean-field theories of ionic liquids [11], ionic crys-
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tals [32] and electrolytes [25, 33]. To go beyond that ap-
proximation, we introduce the next allowable potential-
gradient term, − ε

2
ℓ2
c(∇2φ)2, similar to Cahn-Hilliard

concentration-gradient expansions [34, 35], where ℓc is
an electrostatic correlation length [31].

The sign of the correlation term is negative to describe
over-screening in strongly correlated liquids: The energy
is lowered by enhancing the curvature of φ, a measure of
the “mean-field charge density”, ρ̄ ≡ −ε∇2φ. For point
charges, ℓc is on the order of the Bjerrum length ℓB =
(ze)2/4πεkT (in SI units). For RTILs with ε ≈ 10ε0, the
Bjerrum length, ℓB ≈ 5.5 nm, is much larger than the ion
diameter, a ≈ 1 nm [1], so the correlation length ℓc ≈ a
is typically at the molecular scale [29].

Setting δG/δφ = 0 for bulk and surface variations [31],
we obtain a modified Poisson equation [40] [41] and mod-
ified electrostatic boundary condition, respectively:

ε(ℓ2
c∇2 − 1)∇2φ = ρ = ∇ ·D, (2)

n̂ · ε(ℓ2
c∇2 − 1)∇φ = qs = n̂ ·D, (3)

where D is the displacement field. Due to correlations,
the medium permittivity ε̂, defined by D = −ε̂∇φ, is
a linear differential operator, ε̂ = ε

(

1 − ℓ2
c∇2

)

, whose
Fourier transform (valid for wavenumber |k| ≪ ℓ−1

c ),
ε̂k ∼ ε(1 + ℓ2

ck
2), increases with k, as is typical for

molten salts [36]. It is important to note that our ε̂ is
not the complete dielectric function of the ionic liquid,
which should diverge at small k, as for any conducting
medium [36]. This divergence is subtracted since transla-
tional degrees of freedom are treated explicitly via ρ(φ),
which also takes into account the nonlinear response in
the rearrangement of ions. In our model, ε̂ approximates
the linear dielectric response of the liquid of correlated
ion pairs (zwitterions), which are considered to be bound
by stronger forces, independent of the mean electric field.

Since Poisson’s equation (2) is now fourth-order, we
need additional boundary conditions, similar to electro-
dynamics with spatial dispersion [37]. Consistent with
our bulk gradient expansion, we neglect correlations at
the surface and apply the standard boundary condition,
−εn̂·∇φ = qs. Equation (3) then implies n̂·∇(∇2φ) = 0,
which requires that the mean-field charge density is “flat”
at the surface, n̂ · ∇ρ̄ = 0, consistent with a continuum
model of finite-sized ions.

Following Ref. [11], we describe crowding effects via
the classical model [42]:

g =
kBT

v
{vc+ ln(vc+) + vc− ln(vc−)

+ [1 − v(c+ + c−)] ln [1 − v(c+ + c−)]} (4)

which is the entropy density g = −TS/v of an ideal so-
lution of cations, anions, and holes, respectively, of min-
imum volume v. We set v = (π/6)a3/Φmax = 0.83a3

for random close packing of spheres at volume frac-
tion Φmax = 0.63. More accurate expressions for g
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Ṽ = 10
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FIG. 2: Voltage-dependent double-layer structure predicted
by our model. (a) Dimensionless charge density versus x/a

for Ṽ = eV/kBT = 1, 10, 100 (solid curves), compared to the
mean-field theory [11] with δc = 0 (dashed curves). (b) Di-
mensionless cation (solid) and anion (dashed) concentrations

and mass density (dash-dot) at high voltage, Ṽ = 100. Po-
sition x is measured from the distance of closest approach
and scaled to the ion diameter a = 10Å. Model parameters
γ = 0.5 (bulk/maximum density), δc = 10 (correlation/Debye
length), and ε = 5ε0 are estimated from ion profiles in simu-
lations [20] (Fig. 3 below).

are available for uniform hard-sphere mixtures [25], but,
due to the breakdown of the local-density approxima-
tion [28], they over-estimate steric repulsion in the double
layer [38]. The weaker repulsion in (4) actually provides
a better first approximation for the packing entropy.

The electrochemical potentials of the ions are then

µ± =
δG

δc±
= kBT ln

[

c±
1 − v(c+ + c−)

]

± z±eφ, (5)

and their gradients ∇µ± produce ionic fluxes [25]. In
equilibrium with a reference solution with φ = 0 and
volume fraction, γ = 2vcref

+ = 2vcref
− , the conditions

µ± =constant determine the Fermi-like charge density
distribution, ρ(φ). In electrolytes, γ is the volume frac-
tion of solvated ions in the bulk [25, 26, 33, 39]. In ionic
liquids γ (≤ 1) is the ratio of the bulk ion density to
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FIG. 3: Distributions of cations (above) and anions (below)
sorted into monolayer bins i = 1, 2, . . . for different surface
charges σ, as predicted by our model (solid bars) in qualitative
agreement with simulations (Fig. 2 of Ref. [20], open bars).

the maximum possible density, which characterizes their
ability to compress [11]. In equilibrium, we obtain a (di-
mensionless) modified Poisson-Fermi equation,

(1 − δ2
c ∇̃2)∇̃2φ̃ =

sinh φ̃

1 + 2γ sinh2(φ̃/2)
= −ρ̃(φ̃) (6)

where x̃ = x/λD, ∇̃ = λD∇, φ̃ = zeφ/kBT . Here,
λD =

√
εkBTv/ze is the Debye screening length, and

δc = ℓc/λD is the dimensionless correlation length, which
controls deviations from the mean-field theory. For
ε = 10ε0 and a = 10 Å, the Debye length is very small,
λD = 1.1 Å, so the ion size a becomes the relevant length
scale [43]. If we chose δc = 10 to reproduce double-layer
properties from simulations [20] (below), then correla-
tions are indeed at the molecular scale, ℓc ≈ a.

Results. — Let us apply our model to a half space by
solving δ2

c φ̃′′′′−φ̃′′ = ρ̃(φ̃) for x̃ > 0 subject to φ̃′′′(0) = 0,
and φ̃(0) = Ṽ = zeV/kBT , where V is the surface poten-
tial relative to the bulk. We solve the model analytically
for small, moderate and large voltages [31] and compare
with numerical solutions.

1. Structure of the double layer. In Fig. 2 we show
the calculated charge density (a), mass density and ion
concentrations (b) for γ = 1/2 and δc = 10. For a = 10
Å, T = 450K and ε = 5ε0, which imply ℓc = 0.95a,
the model predicts molecular-scale charge-density oscil-
lations, similar to experiments [29] and in good agree-
ment with simulations [20], as shown in Fig. 3. At small
potentials, the oscillation period and damping length are
λ̃o ∼ 2π

√
2δc for δc ≫ 1 [31], or with units restored,

λo ∼ 2π
√

λDℓc = 20 Å= 2.0a. With increasing volt-
age, a condensed layer of counterions forms and expands

0 2 4 6
2

3

4

5

6

7

Volts

µ 
F

/c
m

2

 

 

10
−2

10
0

10
1

Volts

µ 
F

/c
m

2

V −
1

2V −
1

4

Ref. [19]
δc = 10
δc = 0

FIG. 4: Double-layer differential capacitance Cd from our
model (solid), simulations [20] (dashed), mean-field the-
ory [11] (dash-dot), and our asymptotic scalings (inset).

into the bulk, as predicted by the mean-field theory [11],
but with the important difference that this layer over-
screens the surface charge, leading to a second layer of ex-
cess co-ions, which again (slightly) overscreens and trig-
gers the same low-voltage damped charge-density oscilla-
tions. The model also predicts non-uniform electrostric-
tion at high voltage (Fig. 2(b)) consistent with simu-
lations (Fig. 3): The first counterion layer attains the
maximum density, while the next co-ion-rich layer has a
lower density, but still larger than the bulk.

2. Double-layer capacitance. An important property
of the double layer is its voltage-dependent capacitance
C(V ). It has been found that excluded volume effects
explain trends in the experimental data, but the mean-
field theory over-estimates C, unless an empirical Stern-
layer correction is added [20, 21]. In Fig. 4 we show
the double-layer capacitance versus voltage in our model,
which is in very close agreement with simulations of Ref.
[20] without fitting any additional parameters. We only
account for the extra capacitance, Cs = 2ε/a, in se-
ries with the diffuse double layer, due to the distance
of closest approach of ion centers, a/2. The value of Cs

relative to the mean-field Debye value, CD = ε/λD, is
C̃s = Cs/CD = 2λD/a ≈ 2/δc.

At low-voltage, the model can be linearized and solved
to find the diffuse layer capacitance, Cd [31],

C̃d =
CdλD

ε
∼

√
2δc + 1

δc + 1
for |Ṽ | ≪ 1. (7)

By extending the Composite Diffuse Layer Model of Ref.
[26] we can also approximate Cd at moderate voltages,
once the condensed counterion layer forms and δc ≫ 1;

C̃d ∼ 83/4

3(δ2
cγṼ )

1

4

for
128

81γ
≪ |Ṽ | ≪ 81

128γδ2
c

. (8)

This scaling breaks down at very large voltages when
the condensed layer of charge grows enough to dominate



4

the capacitance, yielding C̃d ∼
√

2/γṼ as in the mean-

field theory [11, 26]. These scalings compare well with
numerical solutions for δc ≫ 1 [31] and explain why our
model is closer to simulations than the mean-field theory
without correlations (Fig. 4).

Conclusion. — In this paper we have made a first
attempt to describe both overscreening and crowding in
dense Coulomb liquids, such as RTILs and molten salts.
Our simple phenomenological theory predicts that over-
screening is pronounced at small voltages and gradually
replaced by the formation of a condensed layer of coun-
terions, followed by complete lattice saturation at very
large voltages. Each of these three regimes is charac-
terized by its own capacitance-voltage dependence. Our
findings are in line with simulations and experiments,
and they give a more complete picture of the nonlinear
polarization of ionic liquids.
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