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We address crystal nucleation and fcc-bcc phase selection in alloys using a multi-phase-field model
that relies on Ginzburg-Landau free energies of the liquid-fcc (face centered cubic), liquid-bcc (body
centered cubic), and fcc-bcc sub-systems, and determine the properties of the nuclei as a function
of composition, temperature and structure. With a realistic choice for the free energy of the fcc-bcc
interface, the model predicts well the fcc-bcc phase-selection boundary in the Fe-Ni system.
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Freezing of undercooled liquids often starts with
the nucleation/formation of metastable (MS) crystalline
phases. In agreement with Ostwald’s step rule, atomistic
simulations imply that the first crystal structure to form
is the one, whose free energy is the closest to the free
energy of the liquid [1]. In alloys this represents a multi-
phase multi-component solidification problem. To date,
the most efficient method used for addressing such prob-
lems is the multi-phase-field theory (MPFT) [2]. It is,
however, only as accurate as the free energy functional
it relies on. Early versions [2] of the MPFT predicted
that the third phase inevitably appears at the interface
between two bulk phases, a behavior originating from the
specific free energy surface assumed. A recent version of
MPFT eliminated the third phase entirely at the interface
[3]. This is not always in agreement with real systems:
Atomistic simulations for the Lennard-Jones (LJ) system
show that although the stable phase is fcc, small nuclei
have a bcc structure, and even the larger fcc crystallites
have a bcc-like layer at the solid-liquid interface [1, 4],
results also born out by the classical density functional
theory (CDFT) [5]. These findings accord with the theo-
retical prediction of Alexander and McTague that in sim-
ple liquids the formation of bcc structure is preferred [6].
Further simulations for the LJ system imply that vary-
ing the pressure at fixed temperature, the bcc/fcc phase
ratio can be tuned in small clusters [7]. Since preference
for MS phase nucleation is quite general, it is desirable to
work out microscopic models that can handle the struc-
tural aspects of phase selection during nucleation.

In this Letter, we present such a microscopic model
for competing fcc and bcc structures. The MPFT is sup-
plemented with a free energy that is based on the GL
expansion of the two-phase free energies [8–10], and con-
siders thus the structural aspects of multiphase solidifi-
cation. Our approach is unique in that it combines crys-
tal structure with thermodynamic and interfacial data of
real systems. In this respect our MPFT is more flexible
than recent CDFT approaches [11], which, in turn, pro-

vide a more detailed description of the solid-solid inter-
face. Herein, we apply the GL-free-energy based MPFT
to predict phase-selection in the Fe-Ni system.

The standard MPFT form of the grand free energy of
a binary system relative to the initial liquid is:

∆Ω =
∫
dr

∑
i<j

ε2ij
2

(φi∇φj − φj∇φi)
2 + ∆ω(φi, c)

 .

(1)
The differential operator on the right hand side has the
required symmetries [2]. In this expression ∆ω is the
relative grand potential density and c the concentration.
The sum runs over different (φi, φj) pairs of the structural
order parameters, while

∑
j φj(r) = 1. When addressing

fcc-bcc competition, without loss of generality, we may
chose φ1, φ2, and φ3 = 1 − (φ1 + φ2) for the fcc, bcc,
and liquid phases, respectively. These order parameters
can be combined to yield formal analogues of the solid-
liquid order parameter m that describes crystalline freez-
ing, and the solid-solid order parameter χ that monitors
the fcc-bcc transition (Bain’s distortion) of the crystal
lattice used in an advanced CDFT of fcc-bcc transition
[5]: φ ⇔ ||m|| ∈ [0, 1] and ψ ⇔ ||χ|| ∈ [0, 1], where
φ = φ1 + φ2 and ψ = φ2/φ. The methodology of the
MPFT anchors the free energy surface to the free ener-
gies of the bulk phases. Specifically, the local grand po-
tential density of the multi-phase system is related to the
contributions ∆ωij of the two-phase systems as follows:

∆ω(φ, ψ, c) = [1− p12(ψ)]∆ω13(φ, c)+
+ p12(ψ)∆ω23(φ, c) + a12(c)P (φ, ψ)g12(ψ),

(2)

where the interpolation functions pij vary monotonously
between 0 and 1 so that pij(0) = 0 and pij(1) = 1,
whereas P (φ, ψ) = [1 − p12(ψ)]p13(φ) + p12(ψ)p23(φ),
which reflects that the solid-solid order parameter is ir-
relevant in the liquid state. The first two terms of Eq.
(2) interpolate between the fcc-liquid and bcc-liquid free
energies, while the third term adds a free energy barrier
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FIG. 1: Interfacial order parameter (solid) and concentration
profiles (dashed) as predicted by the GL approach for the
fcc-liquid interface in the Cu-Ni system. For comparison, the
normalized density peaks (squares) and concentration profile
(circles) from atomistic simulations [15] are also shown.

in between the two solid phases that disappears in the
liquid. The two-phase contributions can be expressed as

∆ωi3(φ, c) = ai3(c)gi3(φ)+
+ pi3(φ)∆ωi(c) + [1− pi3(φ)]∆ω3(c),

for i = 1 or 2, which have the shape of a skewed
double-well. Here gij are double-well functions, for which
gij(0) = gij(1) = 0, with a maximum in between, while
the functions ∆ωi represent the grand potential densities
of the ith phase relative to the initial liquid state.

With these definitions, Eq. (2) recovers the relative
free energies of the bulk phases. However, the results for
the non-bulk states depend on the specific choice of these
functions. In the usual application of the MPFT, they are
chosen intuitively. In contrast, here we use forms deduced
from the GL expansion of the two-phase free energies [8–
10], which forms contain the structural information:

bcc-liquid: g13 = φ2(1− φ)2 and p13 = φ3(4− 3φ),
fcc-liquid: g23 = φ2(1− φ2)2 and p23 = φ4(3− 2φ2),
bcc-fcc: g12 = ψ2(1− ψ)2 and p12 = ψ3(4− 3ψ).

The composition dependent model coefficients are inter-
polated as ε2ij(c) = (1 − c)ε2ij,A + cε2ij,B and aij(c) =
(1− c)aij,A + caij,B , where the constants ε2ij,Y and aij,Y

can be expressed in terms of the free energy and thickness
of the equilibrium interface between phases i and j for
pure component Y . Unlike the CDFT, where the time-
averaged particle density is the order parameter, in our
model the solid-liquid transitions are monitored by the
reduced Fourier amplitude of the dominant density waves
(a single-mode approach), whereas the fcc-bcc transition
by an order parameter related to Bain’s distortion. The
free energy of the interfaces emerge from bulk and gra-
dient contributions associated with a continuous change
of these order parameters across the interface.

Since the nucleus represents an extremum of the grand
potential, its properties can be found by solving the
Euler-Lagrange (EL) equations [5, 9, 12]: δ∆Ω/δφi =
λ(r) and δ∆Ω/δc = 0, where δ∆Ω/δη is the first func-
tional derivative of the grand potential difference with
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FIG. 2: Crystal nuclei in Fe: (a) composite-bcc nucleus at
1449 K [thin lines, square in panel(c)], and composite-fcc nu-
cleus at 1441 K [heavy lines, circle in panel (c)]; (b) composite-
bcc nucleus at 1300 K [triangle in panel(c)]. (c) Nucleation
barrier vs. temperature.
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FIG. 3: Crystal nuclei in Fe50Ni50: Notations are as for Fig.
2. The respective temperatures are T = 1373.5 K and 1183 K
for panel (a) and 1150 K for panel (b). Note that ||c|| ∈ [0, 1].
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FIG. 4: Crystal nuclei in Ni: Notations are as for Fig. 2.
The respective temperatures are T = 1382.5 K and 1050 K
for panel (a) and 1000 K for panel (b).
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FIG. 5: Volume fraction of the third phase (”surface phase”)
in composite nuclei: (a) Temperature dependence of bcc frac-
tion in composite-fcc nuclei (heavy lines), and of fcc fraction
in composite-bcc nuclei (thin lines). (b) bcc fraction vs. Ni
concentration at different temperatures.

respect to the field η, while the Lagrange multiplier λ(r)
ensures the local constraint

∑
j φj(r) = 1 [13]. The re-

spective boundary conditions are as follows: unperturbed
liquid properties in the far field and zero field gradients
at the center. We assume isotropic interfacial properties,
a fair approximation for metallic systems. This bound-
ary value problem has been solved numerically by the
relaxation method. The excess free energy of the nuclei
has been obtained by inserting the solution into Eq. (1).

The two-phase limits of the present model have been
tested previously: The GL technique proved successful
in describing (i) the nucleation barrier for fcc structure
[9], (ii) the properties of the bcc-liquid interfaces [8, 14],
and (iii) the transition between the bcc and fcc phases
[10]. The chemical part of our model has been tested
against atomistic simulations for the Cu-Ni system: The
parameter free GL predictions for the order-parameter
and nanoscale concentration profiles are in a remarkable
agreement with the Monte Carlo results [15] (Fig. 1).

Owing to the lack of known equilibrium coexistence
conditions between the bulk fcc and bcc phases, the well-
known LJ and hard-sphere systems are not suitable for a
full testing of our model. Thus, we have chosen the Fe-Ni
system, where from combined experiments and atomistic
simulations a nearly complete input set is available [16].
The least accurate input is the orientation average of the
free energy of the fcc-bcc interface. For Fe, estimates
of γfcc−bcc for different orientations range between 179
mJ/m2 [17] and about twice the solid-liquid interfacial
energy (∼672 mJ/m2 [16]), yielding ∼425 mJ/m2 for the
average of the upper and lower limits, which we take as
an estimate of the orientation average. Thus the energy
contribution of the defects at the fcc-bcc interface is in-
corporated implicitly in a coarse-grained manner.

First, we present our results for crystal nuclei in Fe,
Fe50Ni50, and Ni (see Figs. 2–4). In panels (a) and (b),
the radial phase-field and concentration profiles are dis-
played. In all cases we observe at least a small amount
of third phase (”surface phase”) at the solid-liquid in-
terface. However, the fcc surface layer on bcc nuclei is
far less pronounced than the bcc layer on fcc nuclei [Fig.
5(a)]. With increasing undercooling, the volume fraction
(X) of the third phase increases [Fig. 5(a)], which is re-
flected in the non-monotonic composition dependence of
X [Fig. 5(b)], following from the shape of the respective
liquidus line in the phase diagram. In Fe, nuclei with a
bcc core (composite-bcc type) are significantly preferred
to fcc core nuclei, whereas in Ni, at temperatures accessi-
ble for experiments, composite-fcc nuclei with a bcc sur-
face layer dominate [see Figs. 2(c) and 4(c)]. The nuclei
observed at the 1:1 composition behave similarly to those
for Ni [Fig. 3(c)], however, with some amount of sur-
face precipitate of Ni at 20% relative undercooling [Fig.
3(a)]. At extremely large undercoolings, composite-bcc
nuclei are preferred for all compositions. At all under-
coolings we studied, composite nuclei are thermodynam-
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FIG. 6: Phase-selection in the Fe-Ni alloy system. The grey
solid and dashed lines correspond to the liquidus and solidus
curves. The symbols indicate the structure nucleated in the
experiment: squares - bcc; circles - fcc [18]. The fcc-bcc phase-
selection boundary predicted for heterogeneous nucleation at
three values of γfcc−bcc are shown: 672 (black dash-dot), 425
(black solid), and 179 mJ/m2 (black dashed).

ically preferable to the respective single-phase nuclei.
Next, we use the present MPFT approach to predict

the phase-selection map for Fe-Ni alloys and compare it
to experiments [18]. Since in metallic systems homoge-
neous nucleation has probably never been realized, we
assume heterogeneous nucleation. In the spirit of the
highly successful free growth limited model of heteroge-
neous nucleation by Greer et al. [19], the phase-selection
boundary for heterogeneous nucleation is determined by
the condition of equal critical radii for the fcc and bcc
type nuclei. The fcc-bcc phase-selection boundary pre-
dicted with γfcc−bcc = 425 mJ/m2 is in a fair agreement
with the experiments (Fig. 6). For comparison, results
for the upper and lower limits are also shown, which enve-
lope the experimental fcc-bcc phase-selection boundary.

Summarizing, we have presented a microscopic multi-
phase-field theory of competing fcc and bcc nucleation
that is anchored to measurable physical properties. Our
study indicates that composite nuclei are preferable to
single-phase nuclei. With a reasonable choice of model
parameters, the GL-free-energy based MPFT predicts
the phase-selection map fairly well for Fe-Ni alloys.
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