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The vacuum of Quantum Chromodynamics is a superposition of degenerate states with different
topological numbers that are connected by tunneling (the θ-vacuum). The tunneling events are
due to topologically non-trivial configurations of gauge fields (e.g. the instantons) that induce local
P-odd domains in Minkowski space-time. We study the quark fragmentation in this topologically
non-trivial QCD background. We find that even though QCD globally conserves P and CP symme-
tries, two new kinds of P-odd fragmentation functions emerge. They generate interesting dihadron
correlations: one is the azimuthal angle correlation ∼ cos(φ1 +φ2) usually referred to as the Collins
effect, and the other is the P-odd correlation ∼ sin(φ1 + φ2) that vanishes in the cross section
summed over many events, but survives on the event-by-event basis. Using the chiral quark model
we estimate the magnitude of these new fragmentation functions. We study their experimental
manifestations in dihadron production in e+e− collisions, and comment on the applicability of our
approach in deep-inelastic scattering, proton-proton and heavy ion collisions.

PACS numbers:

1. Introduction. QCD is at present firmly established as the theory of the strong interactions. Equations of motion
in QCD possess topologically non-trivial solutions [1] signaling the presence of degenerate ground states differing by
the value of topological charge [2]. The physical vacuum state of the theory is a superposition of these degenerate
states, so-called θ-vacuum [3]. To reflect this vacuum structure one may equivalently introduce a θ-term in the QCD
Lagrangian. Unless θ is identically equal to zero, this term explicitly breaks P and CP symmetries of QCD. However
stringent limits on the value of θ < 3 × 10−10 deduced from the experimental bounds on the electric dipole moment
of the neutron [4] indicate the absence of global P and CP violation in QCD.

Nevertheless it has been proposed that the local P- and CP-odd effects due to the topological fluctuations character-
ized by an effective θ = θ(~x, t) varying in space and time could be directly observed through multi-particle correlations
[5]. In heavy ion collisions, the existence of magnetic field (and/or the angular momentum) in the presence of topo-
logical fluctuations can induce the separation of electric charge with respect to the reaction plane, so-called Chiral
Magnetic Effect [6–9]. There is a recent experimental evidence for this effect from STAR Collaboration at RHIC [10].
The interpretation of STAR result in terms of the local parity violation is under intense scrutiny at present, see e.g.
[11–13].

In this paper, we study the role of QCD topology in hard processes using the formalism based on factorization
theorems [14]. From the QCD factorization point of view, the cross section in high energy collision can be factorized
into a convolution of perturbatively calculable partonic cross section and the non-perturbative but universal parton
distribution and fragmentation functions (FFs). In the conventional formalism, these distribution and FFs are required
to be P-even because of the parity-conserving nature of the strong interaction. However, in the presence of local (in
space and time) P-odd domains P-odd FFs can emerge [15]; note that only the cross section of the entire process has
to be P-even, not the FFs.

In this letter, we derive the most general form of the quark FF for a quark fragmenting into a pseudoscalar meson
which is consistent with the Lorentz invariance. Abandoning the parity constraint, we obtain two P-odd FFs besides
the well-known P-even spin-averaged FF [16] and Collins function [17]. We obtain the exact operator definitions and
estimate the size of these new P-odd FFs using the chiral quark model [18]. As a first step, we present their observable
effect in the back-to-back dihadron production in e+e− collisions. We encourage the experimentalists to carry out the
related analyses at RHIC and elsewhere.

2. Quark FFs in locally P-odd background. The quark FFs are defined through the following matrix [19]:

∆ (z, p⊥) =
1

z

∫
dy−d2y⊥

(2π)3
eik·y〈0|Lyψ(y)|PX〉

〈PX |ψ̄(0)L†
0|0〉|y+=0, (1)

where p is the momentum of the final state hadron with a transverse component p⊥ relative to the fragmenting quark
k. We choose the hadron moving along +ẑ direction, and define the light-cone momentum p± = (p0 ± pz)/

√
2. For

convenience, we define two light-like vectors: n̄µ = δµ+ and nµ = δµ−. The momentum fraction z = p+/k+, and
~k⊥ = −~p⊥/z. Ly = P exp

(
ig

∫ ∞

0
dλn ·A(y + λn)

)
is the gauge link needed to make ∆ (z, p⊥) gauge invariant.
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Since QCD is a theory conserving C, P , and T globally, one usually expands the above matrix using the following
constraints [20]:

Hermiticity : ∆†(p, k) = γ0∆(p, k)γ0 (2)

Parity : ∆(p, k) = γ0∆(p̄, k̄)γ0 (3)

Time − reversal : ∆∗(p, k) = VT ∆(p̄, k̄)V −1

T (4)

where VT = iγ1γ3 and p̄µ = pµ = (p0,−~p). Using the basis of gamma matrices Γ = {1, γµ, γµγ5, σµν , iγ5}, and the
available momenta p and k, one can expand ∆(p, k) in the most general form:

∆(p, k) =

[
MA11 +A2/p+A3/k +A4σ

µν kµpν

M

]

+

[
A5/pγ

5 +A6/kγ
5 +MA7iγ

5 +A8σ
µν iγ5kµpν

M

]
, (5)

where M is the hadron mass used to make all Ai’s have the same dimension. Since the time-reversal changes
out-state to in-state, it does not really give any constraint on the coefficients Ai [20]. One the other hand, if one
applies the Hermiticity constraint, all of the Ai’s have to be real. If one further applies Parity constraint, one finds
A5 = A6 = A7 = A8 = 0. However, as we stated in the Introduction, we are interested in the situation in which a
local P-odd domain develops in space-time, and the quark fragmentation happens inside such a P-odd domain (or in
other words, the quark scatters off the non-trivial gauge field configuration prior to transforming into a pseudoscalar
meson). In this case, the P-odd modes in the quark fragmentation could be populated [15] and one has to release the
parity constraint in Eq. (3). Note that even though the FF is not a local quantity (the gauge link in Eq. (1) extends
to infinity along the light-cone), a P-odd domain in Minkowski space is elongated along the light-cone [15], and thus
the P-odd terms do not average to zero. Without parity constraint, we thus need to keep all 8 terms A1 through A8

in Eq. (5). Applying the twist-expansion by parametrizing the momenta as pµ ≈ p+n̄µ and kµ ≈ (p+n̄µ − pµ
⊥)/z and

keeping the leading terms,

∆(z, p⊥) =
1

2

[
D(z, p2

⊥)/̄n+H⊥
1 (z, p2

⊥)σµν p⊥µn̄ν

M

]

+
1

2

[
D̃(z, p2

⊥)/̄nγ5 + H̃⊥
1 (z, p2

⊥)σµν iγ5 p⊥µn̄ν

M

]
(6)

where D(z, p2
⊥) and H⊥

1 (z, p2
⊥) are the usual P-even FFs: D(z, p2

⊥) is the transverse momentum dependent spin-
averaged FF [16], and H⊥

1 (z, p2
⊥) is the Collins function describing a transversely polarized quark fragmenting into an

unpolarized hadron [17]. Now besides the two conventional P-even FFs, we also obtain two new P-odd FFs: D̃(z, p2
⊥)

and H̃⊥
1 (z, p2

⊥). As we will show below, H̃⊥
1 (z, p2

⊥) generates a new kind of azimuthal correlation. Its role is similar to

H⊥
1 (z, p2

⊥): H⊥
1 (z, p2

⊥) represents an asymmetric distribution ∝ (p̂×p⊥)·~sq, while H̃⊥
1 (z, p2

⊥) represents an asymmetric
distribution ∝ p⊥ · ~sq for a transversely polarized quark with spin vector ~sq to fragment into a pseudoscalar meson.
The newly derived P-odd FFs will lead to interesting P-odd effects in experiment as we will show in the next section.

In order to study the experimental effects generated by these P-odd FFs, we need to estimate their magnitude.
For this purpose we use the effective chiral quark model developed by Manohar and Georgi [18], which is an effective
theory of QCD at low energy scale. This model has also been adopted for an estimate of the Collins functions in
[21, 22]. The effective Lagrangian describing the interaction between the quarks and the pion in the leading order is
given by

LqqΠ = − gA

2fπ

ψ̄qγ
µγ5~τ · ∂µ~πψq (7)

where fπ ≈ 93 MeV is the pseudoscalar decay constant.
At tree level, the fragmentation of a quark is modeled through the process q∗ → πq, see Fig. 1. One can obtain the

unpolarized quark FF D(z, p2
⊥) from the definition in Eq. (6) which has been done in [21]. The Collins function can

be calculated similarly, though one needs to go beyond the tree diagram and consider the π-loop to obtain the final
result, see Ref. [21].

Since the chiral quark model Lagarangian in Eq. (7) conserves parity, it does not generate P-odd FFs D̃(z, p2
⊥) and

H̃⊥
1 (z, p2

⊥). As we stated in the Introduction, QCD contains topological gauge field configurations, and their effect
can be mimicked by an effective space-time dependent θ field [5, 6]. One can thus add to the Lagrangian of QCD the
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FIG. 1: Lowest-order Feynman diagram for a quark with momentum k fragmenting into a π meson with momentum p.

term (g2/32π2)θ(x, t)Fµν
a F̃ a

µν ; performing an axial U(1) rotation this term can be transformed into 1

2Nf
∂µθψ̄qγ

µγ5ψq

[9]. Let us define an effective θ̄µ ≡ ∂µθ/2Nf , whose zero (time) component is the chiral chemical potential µ5 [9].
This new term leads to the following equation of motion for the quark field ψ(x):

(
i/∂ −m+ /̄θγ5

)
ψ(x) = 0, (8)

which is not P-invariant any more, and yields a modified quark propagator iS̃(p, θ̄) = i/(/p−m+ /̄θγ5) given by

iS̃(p, θ̄) = i
[
PRS(p+ θ̄) + PLS(p− θ̄)

]

×
[
1 +mγ5

(
S(p+ θ̄) − S(p− θ̄)

)]

×
[
1 +

4m2θ̄2(
(p+ θ̄)2 −m2

) (
(p− θ̄)2 −m2

)
]−1

(9)

where PL,R are the left (right) projection operators PL,R = (1 ± γ5)/2, and iS(p) = i(/p + m)/(p2 − m2) is the
conventional quark propagator. Note that we have treated θ̄ as a constant in deriving Eq. (9). This is because
the time scale associated with the soft non-perturbative dynamics in the FFs due to the non-trivial gauge field
configurations tsoft ∼ 1/ΛQCD is much longer than the time scale for the hard collision thard ∼ 1/Q, so the soft gauge
fields are effectively frozen during hard scattering in each event, and θ̄ can be considered constant. With the P-odd
terms contained in the quark field ψ(x), we can now derive the P-odd FFs directly from Eqs. (1) and (6). To the first
non-trivial order, 〈0|ψ(y)|PX〉 is proportional to

∝ 〈0|ψ(y)ψ̄(x)γµγ5∂µ π(x)ψ(x)|q(k − p), π(p)〉
∝ iS̃(k, θ̄)/pγ5u(k − p), (10)

where u(k − p) is the wave function for the final-state quark with momentum k − p. Using a similar expression
for 〈PX |ψ̄(0)|0〉, we immediately obtain the results for the P-odd FFs. In terms of Feynman diagrams, they are
represented by Fig. 1.

Our calculations further imply that these new FFs are suppressed by a factor θ̄0,3/p+ when θ̄µ is along time or z-
direction. Since p+ is a large component in our twist expansion, we thus neglect the contribution of the 0, 3 components
of θ̄ to be self-consistent. On the other hand, if the θ̄ is along the transverse direction that is perpendicular to p⊥, we
find that the P-odd FFs vanish. We thus only consider the situation when θ̄ is along the p⊥ direction: θ̄µ = θ̄⊥p̂

µ
⊥, in

which case we find

D̃(z, p2
⊥) =

g2
A

64f2
ππ

3z

4θ̄⊥p⊥
p2
⊥ + z2m2

q + (1 − z)m2
π

[
1 − z

2

−
4(1 − z)2z2m2

q m
2
π(

p2
⊥ + z2m2

q + (1 − z)m2
π

)2

]
, (11)

H̃⊥
1 (z, p2

⊥) =
g2

A

4f2
π

mqmπ

8π3

θ̄⊥
p⊥

1
(
p2
⊥ + z2m2

q + (1 − z)m2
π

)3

×
[ (
p2
⊥ + z2m2

q

)2
(z − 2) + (1 − z)2m2

π

×
[
(3z − 2)m2

π − 4(p2
⊥ − z2m2

q)
] ]
, (12)
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which is valid when θ̄⊥ ≪ p⊥, p
+, since we do an expansion and neglect terms ∼ O(θ̄2). From the above equations we

see that both of the P-odd FFs are proportional to θ̄⊥/p⊥. Since p⊥ is a small component, the effect is not suppressed.
We will now estimate the size of the observable effect generated by the P-odd FFs within the same model.

3. Observable effect of parity-odd FFs. Let us now discuss the experimental consequences of the P-odd FFs. As a first
step, we study a relatively simple process, the back-to-back dihadron production in e+e− collisions e+e− → h1h2 +X .
The method we presented here can be generalized to study P-odd effects in heavy ion collisions.

At leading order in QCD coupling, the two hadrons h1 and h2 in e+e− collisions are the fragmentation products of
a quark and an antiquark originating from e+e− → qq̄ annihilation. Following Ref. [23], we choose a reference frame
such that the e+e− → qq̄ annihilation occurs in the x-z plane, with the back-to-back quark and antiquark moving
along the z-axis. The final hadrons h1 and h2 carry light-cone momentum fractions z1 and z2 and have intrinsic
transverse momenta p1⊥ and p2⊥ with respect to the directions of the fragmenting quarks. Using the fragmentation
parameterization in Eq. (6), one can derive the differential cross section as

dσ

dPS = σ0

∑

q

e2q

{
(1 + cos2 θ)

×
[
Dq(z1)Dq̄(z2) − D̃q(z1)D̃q̄(z2)

]

+ sin2 θ cos(φ1 + φ2)

×
[
H⊥

q (z1)H
⊥
q̄ (z2) + H̃⊥

q (z1)H̃
⊥
q̄ (z2)

]

+ sin2 θ sin(φ1 + φ2)

×
[
H⊥

q (z1)H̃
⊥
q̄ (z2) − H̃⊥

q (z1)H
⊥
q̄ (z2)

]}
, (13)

where the phase space dPS = dz1dz2d cos θd(φ1 + φ2), σ0 = Ncα
2
em/4Q

2, and θ is the angle between the initial beam
direction and the z-axis, not to be confused with the θ(x) field. In Eq. (13), we have integrated over the moduli of
the intrinsic momenta, p1⊥ and p2⊥, and over the azimuthal angle φ1. The p⊥-integrated functions Dq(z) and H⊥

q (z)
are defined as

Dq(z) =

∫
d2p⊥Dq(z, p

2
⊥), (14)

H⊥
q (z) =

∫
d2p⊥

|~p⊥|
M

H⊥q
1 (z, p2

⊥). (15)

The definition of D̃q(z) (or H̃⊥
q̄ (z)) is similar to Dq(z) (or H⊥

q (z)).
The cos(φ1 + φ2) correlation is usually referred to as the Collins effect, analyzed recently by BELLE Collaboration

[24, 25]. However, we find that the product of two P-odd FFs H̃⊥
q (z) leads to the same azimuthal correlation. We

emphasize that such products of two P-odd functions in general do not average to zero. They are proportional to
〈∂µθ(x)∂

µθ(x′)〉, and thus are connected to the correlator of pseudoscalar gluon field operators 〈FF̃ (x)FF̃ (x′)〉 that
does not vanish [26]. The existence of this term complicates the extraction of the Collins function, but may in effect
provide an alternative view of the origin of the Collins effect and puts an experimental constraint of the P-odd FF
H̃⊥

q (z). It is interesting that a new azimuthal correlation also emerges: the sin(φ1 + φ2) term, which is explicitly
P-odd. Note that for the sin(φ1 + φ2) contribution, the first term corresponds to the situation when the antiquark
fragments inside the P-odd bubble, whereas the second term corresponds to the situation when the quark fragments
inside the P-odd bubble. They have the opposite sign, and thus when averaged over many events, the effect will
vanish. Thus a P-odd effect happens only on the event-by-event basis [8].

To estimate the effect, let us assume that the antiquark fragments inside the P-odd bubble; the relative magnitude
of the correlation will depend on the following factor I(θ̄, z1, z2), besides the kinematic factor sin2 θ/(1 + cos2 θ),

I(θ̄, z1, z2) =
H⊥

q (z1)H̃
⊥
q̄ (z2)

Dq(z1)Dq̄(z2) − D̃q(z1)D̃q̄(z2)
. (16)

Certainly I(θ̄, z1, z2) depends on the size of θ̄⊥.
To estimate θ̄⊥, we resort to the instanton vacuum model (for a review, see [27]). According to [27], the two most

important parameters are the mean size of the instanton ρ ∼ 1/3 fm and the typical separation R between instantons,
with ρ/R ∼ 1/3. The spatial gradient of the effective field θ(x) within the instanton vacuum model is proportional
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to the inverse instanton size ρ−1 that is the only dimensionful parameter characterizing the solution. The probability
for a quark moving along the light cone to interact with the instanton is ∼ ρ2/R2; note that in Minkowski space-time
the instanton event is elongated along the light cone [15]. We thus estimate the average value of θ̄⊥ sampled by the
quark in a given event as

〈θ̄⊥〉 ≡
1

2Nf

〈∂⊥θ(~x, t)〉 ∼
1

2Nf

· 1

ρ
· ρ

2

R2
∼ 10 MeV, (17)

where we have used Nf = 3, ∂⊥θ ≈ ∆θ/∆x⊥ with ∆θ ∼ O(1) and ∆x⊥ ∼ ρ. With θ̄⊥ = 10 MeV, and other
standard parameters of the chiral quark model [18], and using the calculation of the FFs taken from Ref. [21], we
find I(θ̄, z1, z2) ∼ 1.5% for a typical z1 = z2 = 0.5 at BELLE experiment, with the final two hadrons as π+ and π−.
We urge the experimentalists at BELLE, RHIC and elsewhere to carry out an analysis to constrain the P-odd FFs.
Because of the universality of the FFs, we expect that the formalism developed here could be generalized to other
processes.

4. Conclusion. In this letter we have studied the quark fragmentation in the topologically non-trivial QCD back-
ground. We have found two new FFs besides the well-known spin-averaged FF and the Collins function. Both of the
new FFs are P-odd. We have related the magnitude of these functions to the typical size of the topological fluctua-
tions (described by the effective θ(x) field). We have studied the observable effects of the P-odd FFs in back-to-back
dihadron production in e+e− collisions, and have found that a new azimuthal correlation ∝ sin(φ1 + φ2) appears.
Since the new azimuthal correlation is explicitly P-odd, it can be observed only on an event-by-event basis. Our
results also offer a new interpretation of the Collins correlation. We encourage the experimentalists to carry out an
analysis to constrain the P-odd FFs, and anticipate new applications.
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