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Abstract

Low mass pseudo-scalars, such as the axion, can mediate macroscopic parity and time-reversal

symmetry violating forces. We searched for such a force between polarized electrons and unpolar-

ized atoms using a novel, magnetically unshielded torsion pendulum. We improved the laboratory

bounds on this force by more than 10 orders of magnitude for pseudo-scalars heavier than 1 meV,

and for the first time, have constrained this force over a broad range of astrophysically interesting

masses (10 µeV to 10 meV).
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Low mass pseudo-scalars are predicted by string theories [1] and many extensions to the7

standard model. Such particles are typically associated with the spontaneous breaking of8

a new symmetry at a very high energy scale. The most well developed pseudo-scalar, the9

axion [2], is a consequence of Peccei and Quinn’s solution to the “Strong-CP” problem:10

QCD explicitly violates the product of charge and parity (CP) reversal symmetry, so that11

the CP violating parameter, θQCD, is expected to be of order unity; however, bounds on the12

electric dipole moment of the neutron [3] and the Hg atom [4] constrain θQCD ≤ 3 × 10−10.13

To solve this fine-tuning problem, Peccei and Quinn proposed a new symmetry [5] that14

spontaneously broke in the very early Universe, dynamically minimized θQCD and generated15

the axion. Today, these axions would compose at least some of the cold dark matter [6].16

Cosmology, astrophysics and laboratory experiments constrain the axion’s mass and/or17

couplings. The present dark matter density imposes a model-dependent lower bound of18

about 10 µeV [7]. Estimations of stellar and supernovae energy loss rates impose an upper19

bound of about 10 meV [8]. Heavier axions that couple so strongly that they do not escape20

from stars or supernovae are precluded by laboratory-based particle physics experiments [9]21

and by limits on hot dark matter [10]. The constraints on the mass of pseudo-scalars other22

than axions must be evaluated for each model individually. Nevertheless, the axion mass23

bounds define an “axion-window” where most axion and pseudo-scalar search efforts are24

focused. In the remainder of this paper, we refer to both axions and similar pseudo-scalars25

as axion-like particle (ALPs).26

Most ALP searches look for the conversion of a galactic [11], solar [12] or laboratory27

[13] origin ALP into a photon in the presence of a static magnetic field. However, any ALP28

that couples with both scalar and pseudo-scalar vertices to fundamental fermions would also29

mediate a parity and time-reversal symmetry violating (PTV) force [14] between a polarized30

electron and an unpolarized atom, described by the potential:31

V (σ̂, r) =
~

2(σ̂ · r̂)

8πme

(

ga
sg

e
p

~c

) (

1

rλalp

+
1

r2

)

e−r/λalp (1)

where r is the electron-atom separation vector, λalp = malp/~c is the ALP Compton wave-32

length, σ̂ and me are the spin unit-vector and mass of the polarized electron respectively.33

The ALP pseudo-scalar coupling constant to a polarized electron is ge
p, and the ALP scalar34

coupling constant to an unpolarized atom is ga
s = Z(ge

s + gp
s) + Ngn

s , where Z and N are35

the proton and neutron numbers respectively, and ge
s, gp

s and gn
s are the scalar couplings to36
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FIG. 1. (color online). A scale drawing of the torsion pendulum apparatus. The gap between the

magnet halves, either 2.62 mm or 5.44 mm, is exaggerated for clarity. The inset shows the location

of one cut-out in the silicon crystal with respect to the pole-face edges.

electrons, protons and neutrons respectively. For simplicity, we assume that ge
s = 0 and that37

gp
s = gn

s = gN
s , where gN

s is the scalar coupling constant to a nucleon, so that ga
s = (Z+N)gN

s ;38

the DFSZ [15] axion model, motivated by grand-unified theories, makes the same assump-39

tions. Although gN
s ge

p is expected to be very small (for the axion, gN
s ∝ θQCD), PTV force40

searches have three advantages over more conventional ALP experiments: they do not rely on41

cosmological or astrophysical sources of ALPs; they are sensitive to ALPs that do not couple42

to photons, and most importantly, they can simultaneously probe the entire axion-window,43

which corresponds to a force with a range between 0.02 mm and 20.0 mm.44

Previous PTV searches [16, 17] minimized background magnetic forces with magnetic45

shields that necessarily limited their sensitivity to a short-range PTV force. We overcame46

this limitation with an apparatus, shown in Fig. 1, that allowed us to observe an unshielded,47

highly non-magnetic torsion pendulum suspended by a tungsten fiber between two halves of48

a stationary split toroidal electromagnet. The pendulum consisted of semiconductor-grade49

silicon single-crystal attached to an ultra-pure titanium bar. An autocollimator monitored50

the pendulum’s twist oscillation. The magnet-off pendulum period and Q were typically51

280 s and 2500 respectively. The magnet-on Q was position dependent and ranged from 10052

at |x| = 1.2 mm, to 1000 at |x| = 0.0 mm. A double layer mu-metal cylinder surrounded53

the magnet and reduced laboratory magnetic fields by a factor of 104.54
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A PTV force between the polarized electrons in the electromagnet and the unpolarized55

silicon atoms in the pendulum generates a magnetic-field-dependent (MFD) torque on the56

pendulum, given by (gN
s ge

p/~c)G(x, λalp)B, where G(x, λalp) is a geometrical factor calcu-57

lated by integrating the PTV force over the polarized electrons in the magnet and the silicon58

atoms in the pendulum, x is the distance between the pendulum and the symmetry plane59

between the magnet halves, and B is the magnetic field in the gap between the magnet60

halves. The magnetic field generates two spurious MFD torques. First, frozen ferromag-61

netic impurities (FFIs) on the surface or in the bulk of the silicon create a MFD torque, given62

by µffiB, where µffi is the fixed total magnetic moment perpendicular to the magnetic field63

and the fiber axis. Second, because silicon is diamagnetic, the pendulum seeks a rotation64

angle that minimizes the integral of B2 over the pendulum’s volume. The magnetic field,65

therefore, acted as a torsion spring, the “magnet spring,” that was typically much stronger66

than the fiber spring itself. The magnet spring could mimic a MFD torque if its equilibrium67

angle were correlated with the magnetic field polarity.68

Our pendulum design suppressed these spurious MFD torques. Metallic impurities in69

semi-conductor grade silicon are typically less than 1 ppb by atom [18]; they are also diffuse70

and unlikely to be FFIs because of the single-crystal nature of the material. We removed71

FFIs on the silicon surface by cleaning the pendulum according to the RCA1 and RCA272

protocols [19] that typically leave less than 1010 metal atoms per cm2. The strength of73

the magnet spring was reduced by cut-outs in the silicon that minimized material in the74

magnetic field gradients at the pole-face edges (see inset of Fig. 1). A 300Å thick coating75

of paramagnetic terbium canceled the silicon’s diamagnetism to within 5%. For a magnet76

gap of 5.44 mm, additional fine-tuning of the magnet spring was necessary and achieved by77

cooling the pendulum to 5◦C (terbium’s susceptibility is a strong function of temperature78

[20]).79

The MFD torque was determined by observing the motion of the pendulum while repeat-80

edly cycling between opposite magnet current states (Fig. 2a). For each magnet state, we81

monitored the pendulum’s oscillation for an integral number of periods and then determined82

its equilibrium angle, oscillation amplitude, phase and period by a non-linear least squares83

fit. The data were divided into 12-cycle runs. The magnet spring equilibrium angles, θ±m, and84

spring constants, κ±

m, could differ in the clockwise (+) and counter-clockwise (−) magnet85

states. The observed equilibrium angles of the pendulum, θ±, must satisfy the equations:86
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±B̄
((

gN
s ge

p/~c
)

G(x, λalp) + µffi

)

+κ±

m

(

θ± − θ±m
)

+ κf

(

θ± − θf

)

= 0, (2)

where θf and κf are the equilibrium angle and spring constant of the fiber spring re-87

spectively, and B̄ is the average absolute value of the magnetic field (measured with a Hall88

probe). We inferred the total spring constant, κ± = κf + κ±

m, from the pendulum period in89

each magnet state. Before and after each data run, we measured θf and κf . From Eq. 2,90

one can show that any MFD torque will generate a normalized torque asymmetry, defined91

as92

Ñ =
1

B̄

[

κ̄∆θ − κf
∆κ(θ̄ − θf )

κ̄ − κf

]

, (3)

where ∆θ = (θ+ − θ−)/2 was determined using a filter that corrected for linear drift,93

θ̄ = (θ+ + θ−)/2, ∆κ = (κ+ − κ−)/2 and κ̄ = (κ+ + κ−)/2. The second term corrected for94

the spurious MFD torque created by a misalignment between the fiber and magnet-spring95

equilibrium angles. (The correction was typically smaller than the scatter among the cycles96

in each run). A PTV force, a FFI, and an asymmetry in the magnet spring equilibrium angle97

could all contribute to Ñ according to Ñ =
(

gN
s ge

p/~c
)

G(x, λalp) + µffi + ∆θm(κ̄ − κf)/B̄,98

where ∆θm = (θ+
m − θ−m)/2. Nevertheless, the PTV force has a unique signature: its finite99

range requires that G(x, λalp) must increase approximately as cosh(x/λalp) as the pendulum100

approaches either magnet half. Because spurious MFDs should not exhibit this behavior (we101

test for this below), we could identify a true PTV force in the presence of spurious forces by102

measuring Ñ at different values of x.103

We found that the pendulum’s equilibrium angle depended on its horizontal position so104

that the autocollimator could only observe the pendulum when it was positioned on two105

lines in the horizontal plane (see inset, Fig. 2b). We measured Ñ at eight positions on these106

lines. Figure 2b plots a typical set of Ñs. Their position dependence was not consistent107

with a PTV force, but could be modeled by a function of the form Ñ = ax+ by + c, where x108

and y, defined in Fig. 1, were measured from the axial symmetry axis of the magnet halves,109

and a ≪ b. At a fixed pendulum position, Ñ also depended on the history of the magnet. In110

particular, after demagnetizing the magnet by applying a linearly decreasing (9000 s decay111

time) harmonic current (36 s period), Ñ could change by up to ten times the 1-σ uncertainty112
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expected given the scatter among the 12 cycles in each run. The demagnetization-induced113

changes in Ñ at different pendulum positions were correlated.114

The demagnetization behavior and the linear y dependence can be explained by a degauss-115

dependent asymmetry in ∆θm. The magnet spring can be considered as two effective linear116

springs connected between the pendulum and the inner edge of each magnet pole-face. An117

asymmetry in the magnetic fields at the pole-face edges would create a difference in the118

equilibrium position of these linear springs in the two magnet states that would in turn119

create a ∆θm. Moving the pendulum along y changed the distance between the fiber axis120

and each linear spring. We expect ∆θm to depend linearly on y for pendulum displacements121

that are small compared to the distance between the fiber axis and the pole-face edges. (The122

pendulum was translated by ±1 mm along y while the fiber is 29 mm from the pole-face123

edge).124

We constrained gN
s ge

p/~c in the presence of the demagnetization behavior and linear y125

dependence by segmenting the data-taking procedure into position scans, each of which126

consisted of a demagnetization, followed by measurements of Ñ at the different positions,127

and a subsequent fit of the linear model to this data. We repeated the position scan 20128

times with fields of 0.387 T and 0.193 T and 2.62 mm magnet gap, and 23 times with a129

field of 0.109 T and a 5.44 mm magnet gap. The average of the residuals from each fit at a130

fixed x formed our ALP observable. Figure 2c shows the ALP observable as a function of x131

for the 2.62 mm gap data. The large-gap data extended our sensitivity to larger values of132

λalp and also provided an important systematic check of the small gap data. The 1-σ error133

of the ALP observable (calculated from the scatter among the residuals in each data set)134

was dominated by the non-reproducible effects of the demagnetizing procedure (the thermal135

noise is a factor of 100 smaller). For a given λalp, we fit the predicted x-dependence of the136

PTV force to the ALP observables. (The predicted force conservatively accounted for the137

uncertainties in the pendulum’s dimensions and relative position). The fits yielded larger138

than expected χ2. To provide a 95% confidence limit, we inflated the ALP observable error139

bars for each fit so that χ2/ν = 1, where ν is the number of degrees of freedom, and then140

found values of gN
s ge

p so that ∆χ2 = 3.95. The inflation factors were typically 2.50 and 2.08141

for the 2.62 mm and 5.44 mm gap data respectively. We have no evidence for a PTV force.142

Figure 3 shows our exclusion bounds.143

The µffi contribution is not expected to mimic a PTV force because B̄ differs by less144
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FIG. 2. (color online). (a) A typical interval of slightly more than two complete cycles of 0.193 T

data. The shaded regions illustrate when an electrostatic feedback loop stabilized the pendulum.

(b) Typical average Ñ data. The inset shows the positions where the autocollimator could observe

the pendulum. (c) The ALP observables, best fit signal and a hypothetical PTV signal for the

2.62 mm gap data set.

than a few parts in 103 over the pendulum’s positions. However, the ∆θm contribution145

to Ñ could depend on the pendulum’s x-position in a manner that mimicked a true PTV146

force signal and generated a systematic error. Because the pendulum’s equilibrium angle147

depended on its location within the magnet halves, a x-dependent ∆θm would occur if the148

tilt of the apparatus about the x or y-axis, the magnet temperature, or the absolute value of149

the magnetic field were correlated with the magnet state. (Because of the magnetic forces,150

the relative position of the magnet halves could depend on the absolute value of the magnetic151

field.) A laboratory magnetic field or field gradient that leaked through the magnetic shields152
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FIG. 3. (color online). The experimental 95% confidence upper limit on |gN
s ge

p/~c|. The force

mediated by the DFSZ [15] axion would appear below the bottom-most line. The thermal noise

limit represents an ideal torsion pendulum with a magnet-on Q of 3000. See Ref. [21] for bounds

on the PTV force between polarized and unpolarized nucleons.

would also create a ∆θm that could depend on the pendulum position.153

For each of these systematic errors, we modified the experiment to exaggerate the effect,154

measured Ñ at eight pendulum positions and solved for a PTV force using the same method155

employed to analyze the ALP observable. The systematic error corrections listed in Table 1156

were calculated by multiplying gN
s ge

p/~c, extracted from the exaggerated data, by the ratio157

of the normal to the exaggerated effects. The total systematic error was less than its 1-σ158

uncertainty, which itself was a factor of thirty smaller than the bound on gN
s ge

p/~c for all λalp159

so that corrections to the statistical confidence bounds plotted in Fig. 3 were not required.160

We have substantially improved the bounds on a PTV force between polarized electrons161

and unpolarized nucleons over most of the axion-window, tightening existing constraints162

on ALPs heavier than 1 meV by more than a factor of 1010. Our experimental sensitivity163

was limited by demagnetization scatter and by deviations from a simple model of the lin-164

ear position dependence of the normalized torque asymmetry. We hypothesize that slight165

asymmetries in the magnetic field at the pole-face edges generated both effects. Further166

improvement could be achieved by constructing a magnet from a laminated ferromagnetic167

material that generates a more homogeneous and reproducible magnetic field profile and by168

using a pendulum constructed of a denser material such as germanium. Such an experi-169

ment would more closely approach the thermal limit and could ultimately yield constraints170
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TABLE I. Systematic error summary for the 2.62 mm gap data. The systematic errors for the

5.44 mm gap data are less than those listed here. The uncertainties for other values of λalp scale

with the statistical sensitivity plotted in Fig. 3.

Systematic Size of effect Correction to gN
s ge

p/~c

error for λalp = 0.5 mm

y-axis tilt +2.20 ± 3.30 nrad (+4.60 ± 6.90) × 10−28

x-axis tilt −0.10 ± 1.60 nrad (−0.23 ± 3.68) × 10−28

|B| +7.0 ± 0.8 µT (0.00 ± 1.96) × 10−28

Magnet Tem. −0.32 ± 0.27 mK (−9.63 ± 9.49) × 10−29

Lab. By +27 ± 1 µT (+1.46 ± 1.29) × 10−29

Lab. ∇Bx +3.7 ± 0.8 µT/mm (−2.55 ± 9.68) × 10−30

Lab. Bx +23 ± 2 µT (+0.74 ± 7.77) × 10−29

Lab. ∇By +0.6 ± 0.6 µT/mm (−1.05 ± 1.82) × 10−30

Total (+3.51 ± 8.12) × 10−28

a factor of 1000 better than those presented here.171
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