
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Closed Timelike Curves via Postselection: Theory and
Experimental Test of Consistency

Seth Lloyd, Lorenzo Maccone, Raul Garcia-Patron, Vittorio Giovannetti, Yutaka Shikano,
Stefano Pirandola, Lee A. Rozema, Ardavan Darabi, Yasaman Soudagar, Lynden K. Shalm,

and Aephraim M. Steinberg
Phys. Rev. Lett. 106, 040403 — Published 27 January 2011

DOI: 10.1103/PhysRevLett.106.040403

http://dx.doi.org/10.1103/PhysRevLett.106.040403


LS12299

REVIE
W

 C
OPY

NOT F
OR D

IS
TRIB

UTIO
N

Closed timelike curves via postselection: theory and experimental test of consistency
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Closed timelike curves (CTCs) are trajectories in spacetime that effectively travel backwards in
time: a test particle following a CTC can interact with its former self in the past. A widely accepted
quantum theory of CTCs was proposed by Deutsch. Here we analyze an alternative quantum
formulation of CTCs based on teleportation and post-selection, and show that it is inequivalent to
Deutsch’s. The predictions/retrodictions of our theory can be simulated experimentally: we report
the results of an experiment illustrating how in our particular theory the ‘grandfather paradox’ is
resolved.
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Although time travel is usually taken to be the stuff of
science fiction, Einstein’s theory of general relativity ad-
mits the possibility of closed timelike curves (CTCs) [1].
Following these paths through spacetime, a time traveller
can go back in time and interact with her own past. The
logical paradoxes inherent in time travel make it hard to
formulate self-consistent physical theories of CTCs [2–
6]. CTCs appear in many solutions of Einstein’s field
equations and any future quantum version of general rel-
ativity will have to reconcile them with the requirements
of quantum mechanics. This paper presents one par-
ticular route for resolving those paradoxes and analyzes
a quantum description of CTCs by demanding that a
CTC behaves like an ideal quantum channel. This self-
consistency requirement gives rise to a theory of closed
timelike curves via entanglement and post-selection, P-
CTCs. P-CTCs are based on the Horowitz-Maldacena
‘final state condition’ for black hole evaporation [7], and
on Bennett and Schumacher’s suggestion that teleporta-
tion could be used to describe time travel [8, 9]. This pa-
per explores the consequences of this theory, showing (at
a theoretical level) its inequivalence to Deutsch’s quan-
tum model for CTCs [2]. (There are also classical models
for CTCs that we shall briefly discuss later in the arti-
cle.) Elsewhere, we show that P-CTCs are consistent
[10] with path integral approaches to CTCs [6, 11, 12].
Moreover, because they are based on post-selection [8, 9],
which can be probed experimentally, certain features of
our P-CTC proposal are amenable to laboratory simu-
lation. We present an experiment to simulate how the
grandfather paradox might develop in a P-CTC: the post-
selected results are indistinguishable from what would
happen when a photon is sent a few billionths of a sec-
ond back in time to try to ‘kill’ its former self. However,
we cannot test whether a general relativistic CTC obeys
our theory or not, nor we can experimentally discrimi-
nate between our theory and Deutsch’s: it is currently
unknown whether CTCs exist in our universe.

Deutsch’s elegant quantum treatment of closed time-
like curves [2] provides a self-consistent resolution of the
various paradoxes of time travel by requiring simply that
a system that enters such a curve in a particular quan-
tum state ρ, emerges in the past in the same state (Fig.
1a) even after interacting with a “chronology-respecting”
system in a state ρA through a unitary U . This translates
into the consistency condition,

ρ = TrA[U(ρ⊗ ρA)U †] . (1)

A ρ satisfying (1) exists: the term on the right is a com-
pletely positive map and has at least one fixed point [2].
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FIG. 1: a) Deutsch’s quantum description of CTCs is based
on the consistency condition of Eq. (1), where the unitary
U describes an interaction between a chronology-respecting
system A, initially in the state ρA, and a system B in a CTC.
Deutsch demands that the state ρ of B at the input and out-
put of U be equal. Time goes from bottom to top in this and
in the following diagrams. b) P-CTC: post-selected quantum
teleportation is employed as a description of the closed time-
like curve. The bottom curve

S

represents the creation of
a maximally entangled state of two systems and the upper
curve

T

represents the projection onto the same state.

Deutsch’s self-consistency condition preserves the state
of the time-traveler, but not her correlations with the rest
of the universe [13]: the time traveler may (and almost
certainly will) emerge into a different ‘past’ from the one
she remembers. Instead our P-CTC forces time travelers
to travel to the past they remember. In fact, we de-
mand that a generalized measurement made on the state
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entering the curve yields the same results, including cor-
relations with other measurements, as would occur if the
same measurement were made on the state emerging from
it: the CTC should behave like an ideal quantum chan-
nel (even though, as we shall see, inside a CTC a proper
definition of state cannot be given). Deutch’s CTCs do
not exhibit this particular feature.

Teleportation [14] implements a quantum channel
through the transfer of an unknown quantum state |ψ〉
between two parties (Alice and Bob) using a shared en-
tangled state, the transmission of classical information,
and a unitary transformation V on Bob’s side. A curi-
ous feature of teleportation is that, whenever Alice’s Bell
measurement gives the same result it would when mea-
suring the initial shared state, then Bob’s unitary V is the
identity. In this case, Bob possesses the unknown state
even before Alice implements the teleportation! Causal-
ity is not violated because Bob cannot foresee Alice’s
measurement result, which is completely random. But,
if we could pick out only the proper result, the result-
ing ‘projective’ teleportation would allow to travel along
spacelike intervals, to escape from black holes [7], or to
travel in time. We call this mechanism a projective or
post-selected CTC, or P-CTC.

The P-CTC (Fig. 1b) starts from two systems pre-
pared in a maximally entangled state |Ψ〉 or “

⋃
”, and

ends by projecting them into the same state 〈Ψ| or “
⋂

”.
Probabilities for events in the presence of a P-CTC are
obtained by using ordinary quantum mechanics to calcu-
late the conditional probabilities of the the events given
that a measurement on the final part of the CTC yields
the state |Ψ〉. The probabilities for events in a P-CTC
thus depend on the past and on the future.

If the probability for the outcome |Ψ〉 is zero, then
the P-CTC cannot occur: our mechanism embodies in
a natural way the Novikov principle [15] that only log-

ically self-consistent events occur in the universe. Note
that also a classical version of our method can be easily
described: it uses correlated classical states and post-
selection, and similarly obeys the Novikov principle. It
is also easy to see that any measurement yields the same
statistical results, including correlations with chronology-
respecting systems, whether it is made on the time-
travelling system entering the P-CTC or exiting from it.
Because they are constructed by projecting out part of
a pure state, P-CTCs take pure states to pure states.
Deutsch’s CTCs typically take pure states to mixtures.

Because they rely on post-selection, P-CTCs share
some properties with the weak value interpretation of
quantum mechanics [16], notably that there is no unique
way to assign a definite state to the system in a CTC at
a definite time. Moreover, Hartle [12] showed that quan-
tum mechanics on closed timelike curves is non-unitary
(indeed, it allows cloning) and requires events in the fu-
ture to affect the past. He noted that the Hilbert space
formalism for quantum mechanics might be inadequate

to capture the behavior of closed timelike curves, and
suggested a path integral approach instead. In contrast
to Deutsch’s CTCs, P-CTCs are consistent with the “tra-
ditional” path-integral approaches to CTCs (e.g. see
[5, 6, 11, 12, 17]): this can be shown using the normal
path-integral self-consistency requirement that the clas-
sical paths that make up the path integral have the same
values of all variables (e.g. x and p) when they exit the
CTC as when they enter [10]. Our approach coincides
with Politzer’s [11] path-integral treatment of fermions.

We now analyze how P-CTCs deal with time travel
paradoxes. In the grandfather paradox, the time traveller
goes back in time and kills her grandfather, so she cannot
be born and cannot kill anyone: a logical contradiction.
This paradox can be implemented through a quantum
circuit where a ‘living’ qubit (i.e., a bit in the state 1),
goes back in time and tries to ‘kill’ itself, i.e., flip to the
state 0, see Fig. 2a. There are many possible variants:
i.e. any circuit in which the time travel gives rise to a log-
ical contradiction. Deutsch’s consistency condition (1)
requires that the state is ρ = (|0〉〈0|+ |1〉〈1|)/2, the only
fixed point of the corresponding map. Note that if the
CNOT before the bit flip measures a 0 then the CNOT
afterwards measures a 1, and vice versa: the time trav-
eller really manages to kill her grandfather! However, to
preserve self-consistency, the 1 component (time traveller
alive) that enters the loop emerges as the 0 component
(time traveller dead), and viceversa. Thus, Deutsch’s
CTC preserves the mixed state, but not the identity of
the components: measurements at the input and output
yield different results.

The grandfather paradox is resolved differently by
P-CTCs: the probability amplitude of the projection
onto the final entangled state

⋂
is always null, namely

this event (and all similar logically contradictory ones)
cannot happen. In any real-world situations, the σx

transformation is not perfect. Then, replacing σx with
e−iθσx = cos θ

211 − i sin θ
2σx (with θ ≃ π), the non-linear

post-selection amplifies fluctuations of θ away from π.
This eliminates the histories plagued by the paradox and
retains only the self-consistent histories where the kill
fails (the unitary is 11 instead of σx), and the two out-
put qubits have equal value: P-CTCs fulfill our self-
consistency condition. No matter how hard the time-
traveler tries, her grandfather is tough to kill.

P-CTCs are based on post-selected teleportation, so
we can experimentally simulate certain features of their
behavior (see also [18]): the necessary nonlinearity is in-
troduced through post-selection. To simulate the grand-
father paradox we store two qubits in a single photon:
one in the polarization degree of freedom, representing
the “forward-travelling qubit”, and one in a path degree
of freedom, the “backward-travelling qubit”, see Fig 3.
Our single photons, with a wavelength of 941.7 nm, are
coupled into a single-mode fiber from an InGaAs/GaAs
quantum dot cooled to 21.5K by liquid Helium [19] and
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FIG. 2: a) Grandfather paradox circuit. If we take 1 to rep-
resent ‘time-traveler exists,’ and 0 to represent ‘she doesn’t
exist,’ then the NOT (σx) operation implies that if she exists,
then she ‘kills her grandfather’ and ceases to exist; conversely,
if she doesn’t exist, then she fails to kill her grandfather
and so she exists. The difference between Deutsch’s CTCs
and our P-CTCs is revealed by monitoring the time-traveler
with two controlled-NOTs (CNOT): the two controlled bits
are measured to determine the value of the time-traveling
bit before and after the σx. Opposite values mean she has
killed her grandfather; same values mean she has failed. Us-
ing Deutsch’s CTCs, she always succeeds; using P-CTCs she
always fails. b) Unproved theorem paradox circuit. The time-
traveler obtains a bit of information from the future via the
upper CNOT. She then takes it back in time and deposits
a copy an earlier time in the same location from which she
obtained it (rather, will obtain it), via the lower CNOT. The
circuit is unbiased as to the value of the ‘proof’ bit, so it au-
tomatically assigns that bit a completely mixed value, as it is
maximally entangled with the one emerging from the CTC.

sent to the circuit. Using a Hanbury-Brown-Twiss in-
terferometer, the g(2)(0) of the quantum dot emission
was measured to be 0.29 ± 0.01, confirming the single-
photon character of the source. At the start of the cir-
cuit, (

⋃
) we entangle the path and polarization qubits

using a beam displacer (BD1), generating the Bell state
|φ+〉 = (1/

√
2)(|00〉+ |11〉). To close the simulated CTC

(
⋂

), we post-select on cases where |φ+〉 is detected: we
use a CNOT with polarization (forward traveller) acting
on path (backward traveller), followed by post-selection
on the now-disentangled qubits. The CNOT is imple-
mented by a polarizing beam splitter that flips the path
qubit conditioned on the polarization qubit. We then
post-select on photons exiting the appropriate spatial
port using a polarizer at 45◦ and an Andor iDus CCD
camera cooled to 188K. Within the loop, we implement
a “quantum gun” eiθσx with a wave plate that rotates
the polarization by an angle θ/2. The accuracy of the
gun can be varied from θ = π (the photon “kills” its past
self) to θ = 0 (it always “misses” and survives).

The teleportation circuit forms a polarization inter-
ferometer whose visibility was measured to be 93 ± 3%
(see the inset in Fig. 4). To verify the operation of the
teleportation circuit, all four Bell states |φ±〉, |ψ±〉 were
prepared and sent to the measurement apparatus: post-
selection on |φ+〉 behaved as expected yielding success
probabilities of 0.96± 0.08, 0.10 ± 0.11, 0.02 ± 0.05, and
0.02 ± 0.05 for |φ+〉, |φ−〉, |ψ+〉, and |ψ−〉 inputs. After
this verification, beam displacers (BD2 and BD3) were
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FIG. 3: Experiment to illustrate the P-CTC predictions of
the grandfather paradox. a) Quantum circuit. Using a CNOT
gate sandwiched between optional Z and X gates, it is possi-
ble to prepare all of the maximally entangled Bell states. The
Bell state measurement is implemented using a CNOT and a
Hadamard. Each of the probe qubits is coupled to the forward
qubit via a CNOT gate. b) Experimental apparatus. The
polarization and path degrees of freedom of single photons
from a quantum dot are entangled via a calcite polarization-
dependent beam displacer (BD1), implementing the CNOT.
Half-wave plates (HWP) before and after BD1 implement the
optional Z and X gates. To complete the teleportation, the
post-selection onto |φ+〉 is carried out by recombining the
path degrees of freedom on a polarizing beamsplitter (per-
forming a CNOT gate between path and polarization) and
then passing the photons through a calcite polarizer set to
45 degrees and detecting them. A rotatable HWP acts as a
quantum gun, implementing the unitary U(θ) = e−iθσx . Re-
movable calcite beam displacers (BD2 and BD3) couple the
polarization qubit to two probe qubits encoded in additional
spatial degrees of freedom.

inserted, coupling the polarization qubit to two probe
qubits encoded in additional path degrees of freedom of
the photon. These probe qubits measure the state of the
polarization qubit before and after the quantum gun is
“fired”. When the post-selection succeeds (which simu-
lates the time travel occurring), the state of the qubits is
measured. If they are equal (00 or 11) the gun has failed
to flip the polarization: the photon “survives”, otherwise
(01 or 10) the photon has “killed” its past self.

The state of the probe qubits, conditioned on the post-
selection succeeding, was measured for different values of
θ (Fig. 4). The probes are never 01 or 10, which shows
that “time travel cannot happen” unless the gun mis-
fires, leaving the polarization unchanged and the probes
in 00 or 11. Namely, suicidal photons in a CTC obey the
Novikov principle: they cannot kill their former selves.

Our P-CTCs always send pure states to pure states:
they do not create entropy. Hence, P-CTCs provide a dis-
tinct resolution to Deutsch’s unproved theorem paradox,
in which the time traveller reveals the proof of a theorem
to a mathematician, who includes it in the same book
from which the traveller has learned it (rather, will learn
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FIG. 4: Probability that the postselection simulating time
travel succeeds and the probes are found in the same state
(red circles) or in opposite states (blue diamonds). As the ac-
curacy θ of the quantum gun increases from 0 to π, the proba-
bility that the teleportation succeeds decreases. Nonetheless,
the probability that the probe qubits are found in either the
10 or 01 state (i.e. the kill succeeds) is 0.01±0.04. Solid curves
correspond to theoretical predictions. The theory/experiment
discrepancy is due to a 1.1 ± 0.1◦ mismatch between polariz-
ers used for teleportation. The error bars are due to photon
counting and background from the cooled CCD. Inset: the
teleportation loop is a polarization interferometer with mea-
sured visibility 93 ± 3%.

it). How did the proof come into existence? Deutsch
adds an additional maximum entropy postulate to elim-
inate this paradox. By contrast, post-selected CTCs au-
tomatically solve it (Fig. 2b) through entanglement: the
CTC creates a random mixture of all possible ‘proofs.’

A user that has access to a closed timelike curve might
be able to distinguish nonorthogonal states [20] and per-
form computations very efficiently: for pure state inputs,
Deutsch’s CTCs permit the efficient solution of all prob-
lems in PSPACE [21] (that can be solved with polyno-
mial space resources). (This may be useless for computa-
tion and state discrimination, because CTCs decorrelate
the outputs of the computation from its inputs stored
elsewhere [13].) In contrast, Aaronson’s results on post-
selection in computing imply that the P-CTCs can solve
efficiently problems in the class probabilistic polynomial

(PP) [22]. PP is putatively less powerful than PSPACE.
P-CTCs do not decorrelate inputs from outputs, and can
efficiently solve NP-complete problems, as they can per-
form any computation on a circuit of depth one.
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