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Cross-streamline migration of deformable entities is essential in many problems such as indus-
trial particulate flows, DNA sorting, and blood rheology. Using numerical experiments, we have
discovered that vesicles suspended in a flow with curved flow lines migrate towards regions of high
flow-line curvature, which are regions of high shear rates. The migration velocity of a vesicle is
found to be a universal function of the normal stress difference and the flow curvature. This find-
ing quantitatively demonstrates a direct coupling between a microscopic quantity (migration) and a
macroscopic one (normal stress difference). Furthermore, simulations with multiple vesicles revealed
a self-organization, which corresponds to segregation, in a rim closer to the inner cylinder, resulting
from a subtle interaction among vesicles. Such segregation effects could have significant impact on
rheology of vesicle flows.

PACS numbers: 87.16.D- 87.17.Jj 83.50.Ha 83.80.Iz 87.19.rh

Introduction. Complex fluids are generally made of
rigid or soft particles that are suspended in a Newto-
nian fluid. Examples of complex fluids include emulsions,
polymer solutions, particulate suspensions (many food
products belong to this category) and blood. One of the
major challenges in understanding the physics of com-
plex fluids is the link between the local microstructure
(i.e. spatio-temporal organization of suspended entities)
and the macroscopic rheology. Microstructures sponta-
neously arise in many complex fluids, and may have a
dramatic impact on flow properties [1].

A phenomenon that may induce inhomogeneous or-
ganization of the suspended entities is lateral or cross-
streamline migration. Recall that a single rigid particle
immersed in a Newtonian fluid at vanishing Reynolds
number Re cannot migrate in the direction transverse
to the flow lines [2]. On the contrary, deformable par-
ticles have the ability to migrate cross-streamline, even
at Re = 0 – if a certain symmetry is broken, for exam-
ple the centrosymmetry in linear shear flow. Symmetries
may be broken due to the presence of walls, gradient in
shear rate (e.g., Poiseuille flow), or the presence of flow
line curvature (e.g., cylindrical Couette flow).

Cross-streamline migration appears in many applica-
tions, such as industrial polymer processing [3], DNA
sorting [4], drop dynamics [5], and biofluids. A promi-
nent example of the latter system is blood flow in which
cross-streamline migration of erythrocytes may result in
ample collapse of blood viscosity, reducing blood flow re-
sistance in microvasculature (F̊ahræus-Lindqvist effect).

A common belief is that deformable particles have the
tendency to migrate towards regions of low shear rates
[6–10]. In some circumstances, however, the opposite is
predicted (the case of drops in a certain range of viscos-
ity contrast between the internal an external fluids [5]).
In this paper, we propose an explanation for these dif-

ferences and provide quantitative evidence for the case
of vesicle flows. Our discussion will allow us to conjec-
ture general principles that can be used to predict lateral
migration. The study of multiple vesicles reveals a self
organization in a rim.

We carried out simulations in a Taylor-Couette cell
by taking vesicles as a model system for the suspended
entities. Vesicles are liquid drops delimited by a lipid
bilayer [11–13]; they constitute a simple model for the
description of some features of red blood cell dynamics.
We have chosen to simulate the Taylor-Couette system
because it is widely used for studying the rheology of
complex fluids.

Methods. The numerical simulations are carried out in
two dimensions using a boundary integral formulation.
For simplicity, here we state the free-space formulation
(the formulation for confined flows can be found in [14]):
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where γ is the vesicle membrane, v the membrane veloc-
ity, G and T the Green’s functions of the Stokes flow, x0

and x are points on the vesicle membrane, f is the mem-
brane force, n the outward normal to the membrane, η0

the viscosity of the suspending fluid and λ = η1/η0 the
viscosity contrast between the internal and the external
fluids. The membrane force has contributions from bend-
ing energy and local inextensibility [15, 16]:
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where κ is the bending modulus, c the membrane curva-
ture, ζ a local Lagrange multiplier enforcing membrane
inextensibility and t the normalized tangent to the mem-
brane. For the single-vesicle free-space case, we used two
implementations; the first one is detailed in [17]; the sec-
ond one, which was also used for multiple vesicles and
confined flows, is detailed in [14]. Both implementations
give the same dynamics. To indicate the accuracy of the
simulations let us mention that the vesicle surface is con-
served within a relative error of 10−6 and local contour
length within 10−3.

The normal stress difference is defined as N = σxx −
σyy, where σ is the stress tensor of the suspension, com-
puted using [18, 19]:

N =
1

Aη0γ̇

[
∮

γ
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+ 2η0(λ − 1)

∮

γ

(nxvx − nyvy) ds

]

.

(3)

The x, y coordinate system is relative to the instanta-
neous vesicle position and is defined in Fig. 2. The co-
ordinate axes correspond to circumferential and radial
directions (eθ,−er) and the origin is at the vesicle’s cen-
ter of mass. A is the vesicle area and γ̇ = −2a/r2 the
imposed shear rate. Notice that it depends on the radial
position of the vesicle.

Description of the numerical experiments. First, we
consider a single two-dimensional vesicle immersed in a
Newtonian fluid with a velocity field vθ = a/r, vr = 0 (for
a Couette flow, vθ = a/r + b r). This is an unbounded
flow. This choice is made in order to exclude any migra-
tion due to bounding walls, allowing us to identify the
role of curvature in the flow lines. Boundaries are in-
troduced in a second step. Vesicles are initialized at a
distance of 10r0 from the origin, where r0 =

√

A/π. The
length unit is chosen to be r0 in our simulations. The di-
mensionless numbers that enter the problem are [20] the
reduced vesicle area α =

√

A/[π(p/2π)]2, the viscosity
contrast λ and the capillary number Ca = η0γ̇r3

0
/κ. In

the simulations both α and λ are varied. The value of Ca

depends on the radial position, while a is fixed to a value
a = −10 (a weak dependence of vesicle dynamics on this
parameter [17] is observed). We have performed three
sets of simulations for different α ∈ {0.7; 0.8; 0.9}. For ev-
ery set the range λ ∈ [1, 10] is explored, a range that cov-
ers both tank-treading and tumbling regimes [11, 17, 21].

Results. Typical simulation results are shown in Fig. 1.
Tank-treading vesicles migrate towards the center, while
tumbling ones show a negligibly small outward migra-
tion. We have found that the migration rate depends on
the reduced area and viscosity contrast in a non trivial
way. In Fig. 3, we report the migration velocity vmig for
different vesicles at fixed initial radial position r = 10r0.
Analogous results are obtained for any radial position
3 ≤ r/r0 ≤ 10. In the left panel, the migration velocity

(a) (b)

FIG. 1. (color online). Trajectory and contour of (a) tank-
treading vesicle (α = 0.7, λ = 1) migrating towards high
shear regions and (b) tumbling vesicle (α = 0.7, λ = 4) show-
ing no significant radial migration (after 13 revolutions and 8
tumbling periods).

imposed flow line

membrane forcex
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FIG. 2. (color online). Force distribution on vesicle mem-
brane from Eq. (2) and local coordinate system used for the
calculation of N (α = 0.7, λ = 1).

is shown as a function of the two independent dimension-
less parameters explored in our simulations, namely (α,
λ).

The data do not seem to show a simple trend. For
example, the lines in Fig. 3(a) for migration velocities
obtained for different vesicles intersect at some viscosity
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FIG. 3. (color online). Inward migration velocity normalized
by r0γ̇ as a function of (a) λ and (b) N for different α at
fixed radial position r = 10r0. Every point corresponds to
the (λ, N) pair on the abscissas.
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FIG. 4. (color online). Inward migration velocities divided by
Nr0γ̇ as a function of (a) r and (b) 1/(r − r0) for different α.
Every point corresponds to the (λ, N) pair on the abscissas.

contrast. This points to the absence of a simple law in
this parameter space. We have thus attempted to ratio-
nalize these results by evoking basic physical facts that
distinguish a simple fluid from a complex one. A par-
ticular property of complex fluids is the manifestation of
normal stress difference. We have thus represented the
data (Fig.3b), in terms of the normal stress difference
N measured in the (x, y) coordinate system (see Fig. 2
for notations). Interestingly enough, we observe that the
data closely collapse on a single master curve, showing
that the dynamics does not depend on the control pa-
rameters (α, λ) independently, but rather on their com-
bination embedded in the function N(α, λ). Moreover,
Figure 3(b) shows that vmig/r0γ̇ is simply proportional
to N . This result holds for all the radial positions ex-
plored so far, 3 ≤ r/r0 ≤ 10: data collapse is manifested
within an error of 10% (or less), and the results are repre-
sented with a universal straight line passing through the
origin. The small discrepancies are believed to be due
to the details of the flow around vesicles with different
shapes and orientations.
To gain further insight we have examined the migration
velocity as a function of the curvature of the flow. Figure
4(a) shows vmig/Nr0γ̇ as a function of the radial posi-
tion. This dependence on r is nonlinear. Expressing the
results with the help of an appropriate rescaling (Fig.
4(b)) reveals that vmig/Nγ̇ is a simple linear function
of ξ ≡ 1/(r/r0 − 1). Note that, approximately, ξ is the
flow curvature on the innermost part of the vesicle, which
is also the highest among the flow lines passing through
the vesicle. This is considered to be due to membrane
incompressibility, that propagates stresses along the sur-
face of the vesicle. From the above analysis, we infer the
following scaling relation for migration

vmig ∼ r0γ̇ξN (4)

This is a key result: a macroscopic measure of N (which
may be a very complex function of various parameters)
directly leads to the determination of the (microscopic)
migration velocity. One might ask why should migration

be dictated by normal stress difference at all. To an-
swer this question, one may consider the composite fluid
and denote its spatial and temporal averaged stress by
σ (very much like the definition of the classical stress,
as used in Eq. 3). Let us assume stationary, circular
motion, enjoying symmetry with respect to the angle θ.
Using momentum conservation in polar coordinates one
can show that [22]:

∂σrr

∂r
=

1

r

[

−ρv2

θ + N
]

(5)

where ρ is the fluid density, N = σθθ − σrr, 1/r the flow
line curvature, and −ρv2

θ/r is the inertia term, which is
absent in our case. If N 6= 0, a radial stress gradient takes
place, resulting in an inward force pushing the fluid to-
wards the center if N > 0. No such simple result holds in
flows which do not exhibit flow line curvature. This result
shows that both N and the flow curvature cause inward
motion, in accord with Eq. (4). We have performed sim-
ulations in a parallel flow having the same velocity profile
as the irrotational vortex, that is vx(y) = 1/y (in Carte-
sian coordinates (x, y)). Contrary to the Couette flow, in
parallel flow vesicles migrate toward regions of low shear
rate despite the fact that N > 0. This points to the
conclusion that inward migration in the Couette set-up
is due to the curvature of the flow lines rather than to a
shear gradient.

Tank-treading vesicles show positive normal stresses
and they migrate inwards. In the tumbling regime, we
have found N ≃ 0 (averaged over a tumbling period), and
a negligibly small migration. Moreover, N vanishes for
tank-treading vesicles when approaching the transition
to tumbling or when the shape is close to a sphere [17,
23]. This is consistent with the fact that vmig → 0 with
increasing λ or α (Fig.3).

Having identified the basic phenomena for migration of
a single vesicle, we are now in a position to address the
question of the impact of this feature on the organization
of a collection of vesicles. Here we address the case of a
sufficiently dilute suspension. In these simulations we
have included confining boundary conditions [14, 24], in
order to address a realistic situation. Starting from vari-
ous initial configurations (including a disordered one) we
have found that the mutual interactions between vesicles
lead to a nontrivial spatial organization. We present the
results for a volume concentration φ ≈ 2% in Fig 5 (we
have performed simulations with concentrations between
1% . φ . 6%, leading to the same conclusion). Af-
ter a transient the vesicles exhibit a spatial order: they
organize themselves in a rim by keeping the same inter-
distance. The rim radius is (within numerical uncertain-
ties) very close to the final position of a single vesicle
(Fig. 5). A single vesicle stops when the inward migra-
tion compensates the lift force due to the inner cylinder.
The organization in a rim which has the same radius
as that dictated by the final position of a single vesicle
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FIG. 5. (color online). Equilibrium configurations in a Taylor-
Couette device for (a) a single vesicle and (b) several vesicles
(volume fraction ≈ 2%). The lines represent the induced flow.
Spontaneous organization in (b) is due to inward migration
and vortex interaction.

is not obvious: indeed, the fact that the vesicles select
the same interdistance is a clear indication for their sig-
nificant mutual interactions, and despite this effect the
terminal position does not seem to be affected.

For a better understanding, we have analyzed the be-
haviour of the flow lines. A single vesicle creates two
vortices as shown in Fig. 5(a). The size of the vortices
is of about a quarter of the circumference. We thus ex-
pect vesicles to interact significantly when their number
M approaches 4. This is confirmed by our simulations
that show disorder for M < 4 and order for M ≥ 4.
For M ≥ 4 vesicles keep order because deviations would
cause restoring forces due to vortex interactions. For all
explored volume fractions we found persistence of order
as shown in Fig. 5(b).

Finally, in view of the generality of the arguments pre-
sented for migration, it is natural to attempt to extend
them to other types of complex fluids. For example,
experimental measurements of migration are known for
soft entities in Taylor-Couette and cone-plate rheome-
ters: drops [5, 25, 26] and polymers in dilute suspensions
[27, 28] either migrate towards the center (cone-plate)
or adopt an equilibrium position that lies between the
gap centreline and the inner cylinder (Taylor-Couette),
which corresponds to high shear rate regions. Because
drops, polymers, and vesicles have quite different prop-
erties, their similar behavior with respect to migration
supports our conjecture that the basic mechanisms gov-
erning migration are independent of the mechanical de-
tails of the suspended entity and depend only on the flow
curvature and N . An interesting line of research would
be to study the evolution of order for higher concentra-
tions, and provide a detailed link between microstructure
and rheology.
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