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Laboratory experiments and numerical simulation reveal that a submerged intruder dragged hor-
izontally at constant velocity within a granular medium experiences a lift force whose sign and
magnitude depend on the intruder shape. Comparing the stress on a flat plate at varied inclination
angle with the local surface stress on the intruders at regions with the same orientation demonstrates
that intruder lift forces are well approximated as the sum of contributions from flat-plate elements.
The plate stress is deduced from the force balance on the flowing media near the plate.

PACS numbers:

Objects moved through media experience drag forces
opposite to the direction of motion and lift forces per-
pendicular to the direction of motion. The principles
that govern how object shape and orientation affect these
forces are well understood in fluids like air and water.
These principles explain how wings enable flight through
air and the fins generate thrust in water [1].

Lift and drag forces are also generated by movement
within dry granular media, collections of discrete parti-
cles that interact through dissipative contact forces. Gen-
eration and control of these forces while moving within
granular media is biologically relevant to many desert in-
habitants that dive into [2], or swim within [3] sand. Lift
forces are also relevant to industrial process such as soil
tillage [4].

In granular media, lift and drag forces are not as well
understood as in fluids; movement probes the complex
fluid/solid behaviors of dense granular flows [5]. While
progress has been made understanding drag forces in slow
horizontal and vertical drag and impact [6], there has
been comparatively little work investigating lift forces.
Studies have examined lift forces for a partially sub-
merged vertical rod moving horizontally and for a rotat-
ing plate [7, 8], and the drag force on submerged objects
with curved surfaces [9]; however, the lift forces expe-
rienced by horizontally translated submerged intruders
have not been explored.

Experiment and simulation– Experiment and simula-
tion were employed to investigate the lift (Fz) and drag
(Fx) forces on simple shapes during horizontal transla-
tion in granular media (Fig. 1). In experiment long in-
truders with different cross-sections were dragged within
a bed of glass beads with particle diameter (PD) of
0.32±0.02 cm and density (ρ) 2.47 g/cm3 (Fig. 1). Drag-
ging was performed at a constant speed 10 cm/sec with
the intruder’s vertical mid-point at depth d = 12.5 PD
and its long axis perpendicular to the direction of mo-
tion. In experiment, l = 31.3 PD long intruders were
connected at the midpoint to a force sensor (mounted to
a linear translation stage) by a stiff stainless steel rod of
diameter 2 PD. Following the method of [6], forces on
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FIG. 1. (color online) Lift and drag forces in granular media:
(a) Schematic of the experimental setup. (b) Lift force as a
function of depth for the cylinder (•), square rod (�) and
half cylinder (N). Gray region indicates the depth at which
forces in (c) were measured. (c) Net force on rods measured
in experiment (←) and simulation (←). Forces (←) on the
intruder surfaces were measured in simulation and are scaled
by four for better visibility.

the mounting rod were determined in separate measure-
ments and subtracted from Fx and Fz . The grain bed
was 75 PD wide by 53 PD deep by 75 PD long. The
initial packing state of the grains was prepared by shak-
ing the container moderately in the horizontal direction
before each run. The volume fraction was determined
through measurements ρ, total grain mass (M), and oc-
cupied volume (V) to be M

ρV = 0.62 ± 0.01 .

Simulation employed the soft-sphere Discrete Element
Method (DEM) [12] method in which particle-particle
and particle-intruder contact interactions were deter-
mined by the normal force Fn = kδ3/2 − Gnvnδ

1/2 and
the tangential force Fs = µFn, where δ is the “virtual
overlap” and vn is the normal component of the rel-
ative velocity. Fn comprises a Hertzian contact term
and a velocity dependent normal dissipation [12]. Con-
stants k = 2 × 106 kg s−2m−1/2, Gn = 15 kg s−1m−1/2

and µ = µ{pp,pi} = {0.1, 0.27} represent the hardness,
viscoelastic constant, and particle-particle and particle-
intruder friction coefficients respectively [13]. The simu-
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lated grain bed, bounded by frictionless walls, was 75 PD
wide by 55 PD deep by 78 PD and consisted of 350,000
particles in a bi-disperse mixture of equal parts 0.3 and
0.34 cm diameter spheres. Doubling any dimension of the
grain bed did not change the forces significantly. The ini-
tial volume fraction 0.62±0.01 was prepared by randomly
distributing the particles in the volume corresponding to
the desired volume fraction and then eliminating parti-
cle overlap [14]. Using lower volume fractions reduced
the magnitude of the forces but gave qualitatively sim-
ilar results. Forces were nearly independent of speed,
like other drag studies in the non-inertial regime [10, 11]
(speed / 40 cm/s for our study). In simulation the in-
truder dimensions and intruder speed were matched to
those in experiment and the forces were averaged over
the steady-state time interval.

Shape determines lift– In both experiment and simula-
tion, Fz was sensitive to the cross-section of the intruder.
As shown in Fig. 1(b,c), Fz for the half-cylinder was
downward (opposite the orientation of the curved sur-
face), while for the two vertically symmetric geometries,
the full cylinder and square rod, Fz was positive with
magnitude larger for the cylinder than for the square. Ex-
periments with smaller glass beads (0.3mm) gave similar
results (see supplementary material). |Fz | increased with
intruder depth for all intruders (Fig. 1b). The lift mech-
anism is different from the Brazil nut effect [16] which
results from agitation of the medium by the container.

Simulation allowed investigation of the surface stress
distribution responsible for lift and drag on the intrud-
ers. For all shapes the surface stress was largest along the
leading surface (Fig. 1c green arrows). Due to the linear
dependence of granular pressure with depth and the finite
size of the intruder [6], local stress increased with depth
along the flat face of the square (Fig. 1c). However, for
curved intruders (e.g. the cylinder in Fig.1c), the magni-
tude of local stress was primarily determined by the local
surface orientation. As the local surface tangent became
more aligned with the intruder velocity the force magni-
tude became small, supporting observations that surfaces
parallel to the direction of motion contribute little to the
drag force [9]. Since the normal force was larger than the
frictional force, the direction of the local grain-intruder
reaction force was nearly opposite to the surface normal
at all points along the intruder’s leading surface.

The dependence of the forces on the local surface ori-
entation suggests that decomposing the surfaces into dif-
ferential area elements and summing the forces on those
elements may describe the net drag and lift experienced
by the three shapes studied. A similar decomposition
was successfully used to calculate net drag and thrust on
an undulatory sand-swimmer [3] in the horizontal plane.

Plates as differential elements– To determine if the
forces on curved intruders can be understood by decom-
posing the shape into flat plate elements we now study
the stresses on a flat plate with tangent angle α varied
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FIG. 2. Normal (σ), and shear (τ ), stress on the leading sur-
face of the cylinder as a function of tangent angle α compared
to the stresses on a plate with the same α. �, N, •, and H
represent σcylinder, σplate, τcylinder and τplate respectively.

between 0◦ and 180◦ (e.g. α = 0◦ is along the direc-
tion of motion). In simulation, a long (l = 31.3 PD),
thin (0.1 PD), flat plate of finite width w = 7.94 PD was
dragged horizontally through the granular medium with
its center 12.5 PD below the initial surface, and the av-
erage normal (σ) and shear stress (τ) on the leading side
of the plate were measured as a function of α (Fig. 2).
The stresses were asymmetric about α = 90◦, and σ in-
creased rapidly for small α, peaking at α ≈ 50◦. At
α ≈ 60◦, τ changed sign, indicating a reversal in grain
flow along the surface. We define the effective friction
ratio on the plate as µpeff (α) = τ/σ, which is zero at
α ≈ 60◦ and saturates to the expected magnitude of µpi
for α > 135◦ and α ≈ 0◦ with opposite signs. Remark-
ably, along the surface of the cylinder (half-cylinder and
square rod as well), the stresses approximately matched
the stresses on the plate oriented at the same angle α
(Fig. 2). The stresses on the intruders were corrected by
considering that the depth of the differential element is
different from the depth of the center of the cylinder and
assuming linear dependence of the stress on depth.
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FIG. 3. (color online) (a) The drag (|fx|, blue) and lift (fz,
red) components of the stress on a plate as a function of α in
granular media (◭ and N) as compared to a fluid with with
Re ≪ 1 (dashed lines) [17]. Dash-dot red line is granular
wedge model (see Force model section).

The near equality between the stresses on plates and
local surface regions of intruders with the same orienta-
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tion implies that Fz and Fx for a translated rod can be
approximated by the sum of forces from the correspond-
ing shape built from infinitesimal plates. Resolving the
stresses on the plate at orientation α into the lab frame
(xyz) gives the local lift fz(α) and local drag fx(α) force
contributions per unit area on the plate element (Fig. 3).
Fz for different shaped rods results from the integration
of fz(α) contributions along the intruders leading sur-
face, corrected by a linear depth term, over the intruders
infinitesimal surface area dA, e.g. Fz =

∫
fz(α)(z/d)dA

(Fig. 4a). Comparison of this integration over the three
rod shapes with the measured Fz from simulation and
experiment (Fig. 4b) shows good agreement. The orien-
tation of the leading surface of the cylindrical intruder
varies from 0 ≤ α ≤ 180◦ and the asymmetry of fz(α)
results in a net positive lift. Positive fz at α = 90◦ is
responsible for the small lift on the square rod. For the
half-cylinder, 90 ≤ α ≤ 180◦, and Fz is negative.
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FIG. 4. (color online) (a) Fz on intruders calculated by in-
tegration of fz(α). Red outlines on the shapes indicate the
leading surface and the hatched area indicates the correspond-
ing range of α and region of integration. (b) Fz calculated by
integration of fz from simulation (red hatched bar) and model
(gray hatched bar) compared to direct measurement of Fz in
experiment (black bar) and simulation (red bar).

To gain insight into the nature of granular drag and lift
we compare our results to those from low Reynolds num-
ber fluids where inertia is negligible and viscous forces
dominate. fx and fz on a plate at angle α in low Re flu-
ids are symmetric along the direction of motion α = 90◦

(Fig. 3, dashed curves) while the drag and lift forces
on the plate in granular media are asymmetric about
α = 90◦. This suggests that a granular model is required
to understand the origin of lift in granular media.

Force model– In the quasi-static regime of granular
flow, the force on an intruder can be determined by
analyzing the force balance on the moving volume of
grains [4, 10]. With the plate acting as one flow boundary
we can determine the normal and tangential components
of stress (σ and τ) on the plate surface from these force
balance equations. In practice this requires approximat-
ing the boundaries of the moving media as planes and
computing the forces acting on them.

Examination of the motion of grains in the vertical
plane (xz) reveals that the particles move upwards in
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FIG. 5. (color online) Flow of grains and force-balance model:
(a) Flow field in the vertical (xz) plane for three plate (solid
black line) orientations. Gray boundary indicates regions with
upward flow [18]. (b) Forces on a wedge for α < αvp [regime
(VP)] and on the band for α ≥ αvp [regime (P)]. (c) The aver-
age flow velocity angle ψ in the upward-flow region vs. α (•).
(d) The weight of the upward-flow region as function of α cal-
culated from simulation (�) and fit (black) to W = c sin(α),
where c = 5.7 N. (e) Normal component of the stress on the
plate σ calculated from the model (black) and measured from
simulation (N). The black dashed line α = αvp = 97◦ indi-
cates the boundary between the two regimes (VP) and (P).

front of the plate and flow along a lower boundary (see
Fig. 4a), a slip plane. Finite yield stress in granular me-
dia results in flowing regions bounded by slip planes with
upward flow direction due to increasing yield stress with
depth [10]. The upper region of the flow is confined by a
boundary starting from the top edge of the plate and ap-
proximately parallel to the lower boundary. The weight
W of this up-flow region A [18] is well fit by W = c sinα,
and is thus proportional to the projected plate length
normal to the direction of motion (see Fig. 4d). The di-
rection of average velocity of the particles in the band ψ
varies little (see Fig. 4c) and we approximate the angle
of the flow boundaries as ψ̄ = 44◦.

The plate defines one of the boundaries of A for large
α (e.g. α = 150◦ in Fig. 5a) but for small α (e.g. α = 50◦

in Fig. 5a), the vertical velocity of the particles adjacent
to the plate is negative and thus the upward flow bound-
ary is described by a virtual plane intersecting the top
of the plate and extending downwards at angle αvp. We
therefore consider two regimes of flow: for α ≥ αvp, we
approximate A as bounded by the plate and two paral-
lel surfaces with angle ψ̄ [regime (P) in Fig. 5b]. For
α < αvp, the upwards flow region A is bounded by the
virtual plane and two parallel surfaces with angle ψ̄. The
region adjacent to the plate is bounded by the plate, the
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virtual plane, and an approximately horizontal bottom
surface [regime (VP) in Fig. 5b]. For regime (P), the
forces on the flowing band are the forces from the top
and bottom boundaries and its weight. On the plate
surface, the friction coefficient µpeff (α) is used. Within
the media, dynamic friction is assumed and the friction
coefficient is tan γ, determined by the angle of repose,
γ = 13±1◦[21], which is measured in separate simulations
by tilting the initially horizontal container and recording
the post avalanche surface orientation. Simulation indi-
cates that the stress at the bottom surface dominates;
therefore we neglect the force on the top of the flow band
(Ft in Fig. 5b). The normal stress on the plate, σ, can
be solved from the force balance on the band to obtain
σ(α) = W

lw
cosβ sin(ψ̄+γ)

sin(α−β−ψ̄−γ)
, where β(α) ≡ tan−1 µpeff .

For regime (VP), the normal stress on the plate is
calculated by considering the stress on the wedge ad-
jacent to the plate. The stress on the virtual plane can
be solved by the above equation with the corresponding
weight of the band and a fixed angle α = αvp. Solv-
ing the force balance equation for this triangular wedge

we obtain σ(α) = W
wl

cosβ sin(ψ̄+γ)

sin(α−β′−ψ̄−γ)

sin(αvp−β
′+γ)

sin(α+β−γ)) , where

β′ = β(αvp). The parameter αvp = 97◦, determined from
a best fit of σ(α) from simulation, is within the expected
range from flow field observations (Fig. 5a).

Comparison of σ calculated from the wedge model and
σ measured directly in simulation demonstrates that the
model captures the asymmetric shape of σ (Fig. 5e). In-
tegration of fx calculated from the model over the non-
planer intruder surfaces yields net lift forces in agreement
with those from other methods (Fig. 4b). The decrease
in σ above α = 90◦ results from the decrease in W with
increasing α. For α ≤ 90◦, although W increases with
α, the stress on A is transmitted by the wedge which in-
duces extra resistance on the bottom plane; therefore σ
peaks at α smaller than 90◦. The model assumes the up-
flow area A (W ) increases with depth which explains the
monotonic increase of |Fz | with depth. The discrepancy
between σ in model and simulation may be due to the
simplified description of the shape of the boundaries of
the flowing media, approximation of ψ and αvp as con-
stants and W as a simple function, and neglecting Ft.

Decomposition of the force on the intruder into forces
on differential elements assumes that the flowing region
corresponding to each element is not disturbed by other
elements. This may explain the difference we observe be-
tween the stress on the plate and the local stress along
the intruder for small α (corresponding to elements on
the bottom), where the upper flow boundary for these
elements is obstructed by higher regions of the cylinder.
For objects with concave leading surfaces, the use of dif-
ferential surface elements may require consideration of
material jamming in the concave region.

We have shown that the magnitude and sign of the
drag induced lift force in granular media depends on the

shape and depth of the intruder. Drag induced lift on
non-planar intruders can be computed as the summation
of lift forces from planar elements which each experience
a lift force resulting from the pushing of material up a
granular slip plane. The increase of yield stress with
depth in granular media causes the asymmetric flow and
enhances the lift force on a plate facing downward. Our
understanding of these forces can elucidate the effects
of head and body shapes [19] of sand burrowing organ-
isms, and could aid design of control surfaces to allow
robots [20] to maneuver in granular environments.
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